Annals of medicine
-
Obesity is the result of disequilibrium between energy intake and energy expenditure (EE). Successful long-term weight loss is difficult to achieve with current strategies for the correction of this caloric imbalance. Non-shivering thermogenesis (NST) in brown adipose tissue (BAT) is a possible therapeutic target for the prevention and treatment of obesity and associated metabolic diseases. ⋯ Especially the activation of BAT via endogenous pathways has received strong scientific attention. Here we will discuss the relevance of several pathways in activating BAT and their implications for the treatment of obesity. In this review we will focus on the discussion of the most promising endocrine and paracrine pathways to stimulate BAT, by factors and pathways that naturally occur in the human body.
-
Idiopathic pulmonary fibrosis (IPF) is a severe, progressive fibrotic disease of the lung of unknown etiology that affects approximately 150,000 patients in the United States. It carries a median survival of two to three years, but clinical course can vary markedly from patient to patient. ⋯ An enormous body of work in recent years, spanning the bench to the bedside, has radically altered our understanding of the molecular mechanisms underlying IPF. Newer modalities, particularly those involving monoclonal antibodies targeted at specific pathways known to contribute to the fibrotic process, have generated a great deal of excitement in the field, and recent clinical trials on therapies such as pirfenidone and nintedanib herald a new era in targeted IPF therapies.
-
Brown adipose tissue (BAT) is a specialized organ responsible for thermogenesis, a process required for maintaining body temperature. BAT is regulated by the sympathetic nervous system (SNS), which activates lipolysis and mitochondrial uncoupling in brown adipocytes. ⋯ On the basis of this evidence, extensive research has been focused on BAT function, where new molecules, such as irisin and bone morphogenetic proteins, particularly BMP7 and BMP8B, as well as novel central factors and new regulatory mechanisms, such as orexins and the canonical ventomedial nucleus of the hypothalamus (VMH) AMP- activated protein kinase (AMPK)-SNS-BAT axis, have been discovered and emerged as potential drug targets to combat obesity. In this review we provide an overview of the complex central regulation of BAT and how different neuronal cell populations co-ordinately work to maintain energy homeostasis.