Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology
-
Interferons play an important role in innate immunity. Previous studies report deficiency in virus induction of interferon (IFN)-α, IFN-β and IFN-λ in bronchial epithelial and bronchial lavage cells in atopic asthmatics. It is now recognized that asthma is a heterogeneous disease comprising different inflammatory phenotypes, some of which may involve innate immune activation in the absence of overt infection. ⋯ Neutrophilic, but not eosinophilic, asthmatics display overexpression of IFN-β, IFN-λ1/IL-29 and ISGs in their sputum cells that may reflect ongoing innate immune activation.
-
Children with risk alleles at the 17q21 genetic locus who wheeze during rhinovirus illnesses have a greatly increased likelihood of developing childhood asthma. In mice, overexpression of the 17q21 gene ORMDL3 leads to airway remodelling and hyperresponsiveness. However, the mechanisms by which ORMDL3 predisposes to asthma are unclear. Previous studies have suggested that ORMDL3 induces endoplasmic reticulum (ER) stress and production of the type I interferon (IFN)-regulated chemokine CXCL10. ⋯ Multiple lines of evidence support an association between higher ORMDL3 and increased rhinovirus-induced HSPA5 and type I IFN gene expression. These associations with ORMDL3 are cell type specific, with the most significant 17q21 genotype effects on ORMDL3 expression and HSPA5 induction evident in B cells. Together, these findings have implications for how the interaction of increased ORMDL3 and rhinovirus may predispose to asthma.