Journal of cardiac surgery
-
Current surgical techniques in operations on the thoracic aorta frequently require exclusion of the cerebral circulation for varying periods. During these periods, hypothermic circulatory arrest (HCA), selective cerebral perfusion (SCP), and retrograde cerebral perfusion (RCP) can be used for cerebral protection. Hypothermia is the principle component of these methods of protection. ⋯ Present clinical data do not allow separation of its protective effect from that of HCA alone. Recent modifications in the application of HCA include monitoring of cerebral O2 extraction, and selective use of supplemental SCP to limit arrest times to less than 50 minutes, or RCP to prevent embolic strokes, as indicated. These changes appear to have reduced the overall mortality, the severity of embolic strokes, and stroke-related mortality.
-
We evaluated cerebral metabolism during retrograde cerebral perfusion (RCP) and circulatory arrest during profound hypothermia, and also investigated the effects of perfusion pressure on RCP. Twenty-four adult mongrel dogs were placed on cardiopulmonary bypass and cooled to a nasopharyngeal temperature of 20 degrees C. At this temperature, hypothermic circulatory arrest (HCA; n = 6), and RCP with a perfusion pressure of 10 mmHg (RCP10; n = 6), 20 mmHg (RCP20; n = 6), and 30 mmHg (RCP30; n = 6) were carried out for 60 minutes. ⋯ In the RCP30 group, the water content of cerebral tissue was significantly higher than in other groups. In the RCP20 group, temperature was maintained in a narrow range, oxygen consumption and carbon dioxide excretion could be observed, there was no excess lactate, and ATP and energy charge were significantly higher than in the HCA group. In conclusion, RCP can provide adequate metabolic support for the brain during circulatory arrest, and a perfusion pressure of 20 mmHg is most appropriate for RCP.