Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
-
The intervertebral disc exhibits a complex inelastic response characterized by relaxation, hysteresis during cyclic loading and rate dependency. All these inelastic phenomena depend on osmotic interactions between disc tissues and their surrounding chemical environment. Coupling between osmotic and inelastic effects is not fully understood, so this article aimed to study the influence of chemical conditions on the inelastic behaviour of the intervertebral disc in response to different modes of loading. ⋯ Analysis of variance showed that saline concentration significantly influenced inelastic effects in tension and especially in compression (p < 0.05), but not in torsion. Opposite effects were seen in tension and compression. An interpretation of the underlying osmo-inelastic mechanisms is proposed in which two sources of inelastic effects are identified, that is, extracellular matrix rearrangements and fluid exchange created by osmosis.
-
Proc Inst Mech Eng H · Mar 2019
Comparative StudyBiomechanical comparison of screw-based zones of a spatial subchondral support plate for proximal humerus fractures.
Stabilisation of proximal humerus fractures remains a surgical challenge. Spatial subchondral support (S3) plate promises to overcome common complications associated with conventional proximal humerus plates. This study compared the biomechanical performance of S3 plate with a fixed-angle hybrid blade (Equinoxe Fx) plate and a conventional fixed-angle locking plate (PHILOS). ⋯ Stability of humeri treated with S3 plate depends on screws' number, orientation and location. Varus stiffness of S3 plate construct (10.54 N/mm) was higher than that of PHILOS (6.61 N/mm) and Fx (7.59 N/mm) plate constructs. We attribute this to S3 plates' thicker cross section, the 135° inclination of its screws with respect to the humeral shaft and the availability of pegs for subchondral support.