Journal of cognitive neuroscience
-
Abstract Negative outcomes, as identified from external feedback, cause a short-latency negative deflection in the event-related potential (ERP) waveform over medial frontal electrode sites. This brain response, which has been called an "error related negativity" (ERN) or "medial frontal negativity" (MFN), may reflect a coarse evaluation of performance outcomes, such as the valence of a reward within a monetary gambling task. Yet, for feedback to lead to the adaptive control of behavior, other information concerning reward outcomes besides experienced valence may also be important. ⋯ Beginning even earlier, at around 150 msec, responses to high-consequence outcomes resulted in a greater, more centrally distributed, positive potential than those involving low-consequence outcomes, independent of valence. Furthermore, the amplitude of these early effects was significantly modulated by the sequence of outcomes in previous trials. These results indicate that early evaluation of feedback goes beyond simple identification of valence-it involves the consideration of multiple factors, including outcome magnitude, context of unchosen options, and prior history.
-
In texture segregation, an example of scene segmentation, we can discern two different processes: texture boundary detection and subsequent surface segregation [Lamme, V. A. F., Rodriguez-Rodriguez, V., & Spekreijse, H. ⋯ Blood oxygenation level-dependent magnetic resonance imaging results show correlates of boundary detection and surface segregation in all early visual areas including V1. We conclude that texture boundaries are detected in a feedforward fashion and are represented at increasing latencies in higher visual areas. Surface segregation, on the other hand, is represented in "reverse hierarchical" fashion and seems to arise from feedback signals toward early visual areas such as V1.