Journal of cognitive neuroscience
-
There is strong evidence to suggest that the complex cognitive process underlying mental rotation does not have a discrete neural correlate, but is represented as a distributed neural system. Although the neuroanatomical nodes of this so-called rotation network are well established, there is as yet little empirical evidence to indicate how these nodes interact during task performance. Using an optimized, event-related paradigm, this study aimed to test a previously proposed hypothetical neurocognitive network for mental rotation in female subjects with path analysis, and to examine changes in effective connections across different levels of task difficulty. ⋯ It was further demonstrated that the observed in interregional effective connectivity changes with the level of task demand. These changes were directly related to the time course of the experimental paradigm. The results of path analysis in fMRI should therefore only be interpreted in the light of a specific experimental design and should not be considered as general indicators of effective connections.