Journal of neuroendocrinology
-
J. Neuroendocrinol. · Jan 1997
Immunotargeted lesions of paraventricular CRF and AVP neurons in developing rats reveal the pattern of maturation of these systems and their functional importance.
Pituitary ACTH secretion in the rat is controlled by a number of hypothalamic secretagogues, like CRF and AVP and by inhibitory feedback provided by glucocorticoids. During development, little is known about the precise regulation of ACTH release by hypothalamic neuropeptides and glucocorticoids. We used immunotargeted chemical PVN lesions to investigate the role of CRF and AVP neurons of the hypothalamic paraventricular nucleus (PVN) in the control of ACTH secretion in neonatal rats under basal conditions and 5 days after adrenalectomy (ADX). ⋯ During the first 10 days of life, within the adrenal stress hyporesponsive period, hypothalamic CRF and AVP neurons are not sensitive to glucocorticoid feedback and basal ACTH secretion appears to be relatively independent from hypothalamic input. After the second week of life, maturation of glucocorticoid receptors, neuronal phenotype and connections of the PVN to other brain structures (bed nucleus of the stria terminalis, central amygdala) allows for the full expression of corticosterone effect on hypothalamic neurons and for compensatory changes to occur following lesions. These results emphasize the extraordinary capacity of the developing central nervous system to adapt to changes in functionning of some neuronal areas critical for homeostatic balance and the important potential role of intra-hypothalamic and extrahypothalamic relationships in maintaining control over ACTH and glucocorticoid production during development.