Journal of neuroendocrinology
-
J. Neuroendocrinol. · Jan 2012
Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function.
The mitochondrial energy-transducing capacity of the brain is important for long-term neurological health and is influenced by endocrine hormone responsiveness. The present study aimed to determine the role of oestrogen receptor (ER) subtypes in regulating mitochondrial function using selective agonists for ERα (propylpyrazoletriol; PPT) and ERβ (diarylpropionitrile; DPN). Ovariectomised female rats were treated with 17β-oestradiol (E(2) ), PPT, DPN or vehicle control. ⋯ Furthermore, lipid peroxides, accumulated as a result of hormone deprivation, were significantly reduced by E(2) , PPT and DPN. These findings suggest that the activation of both ERα and ERβ is differentially required to potentiate mitochondrial function in brain. As active components in hormone therapy, synthetically designed oestrogens as well as natural phyto-oestrogen cocktails can be tailored to improve brain mitochondrial endpoints.
-
J. Neuroendocrinol. · Jan 2012
ReviewTranslocator protein (18 kDa) as a target for novel anxiolytics with a favourable side-effect profile.
Anxiety disorders are frequent and highly disabling diseases with considerable socio-economic impact. In the treatment of anxiety disorders, benzodiazepines (BZDs) as direct modulators of the GABA(A) receptor are used as emergency medication because of their rapid onset of action. However, BZDs act also as sedatives and rather quickly induce tolerance and abuse liability associated with withdrawal symptoms. ⋯ Also in humans, XBD173 displays antipanic activity and does not cause sedation and withdrawal symptoms after 7 days of treatment. XBD173 therefore appears to be a promising candidate for fast-acting anxiolytic drugs with less severe side-effects than BZDs. In this review, we focus on the pathophysiology of anxiety disorders and TSPO ligands as a novel pharmacological approach in the treatment of these disorders.