Pharmacology, biochemistry, and behavior
-
Pharmacol. Biochem. Behav. · Oct 2008
Interaction between morphine and norketamine enantiomers in rodent models of nociception.
Ketamine, one of a few clinically-available N-Methyl-D-aspartate (NMDA)-receptor antagonists, is known to improve the analgesic efficacy of opioids in humans and rodents. However, the use of ketamine in combination with opioids is mainly restricted to the perioperative setting, due to severe psychotomimetic, sedative and motor side effects. Recent data from our laboratory demonstrated that a major metabolite of ketamine, norketamine, in particular the S(+) enantiomer, had a better antinociception/side effects profile than ketamine in rats. ⋯ In the present study, morphine (a low dose) was combined with S(+)- and R(-)-norketamine (sub-antinociceptive doses) and characterized utilizing rodent models of pain including: thermal nociception (the tail-flick test), peripheral neuropathy (chronic constriction nerve injury) and tonic inflammatory pain (the formalin test). The data showed that: 1) Norketamine enhanced morphine antinociception and blocked tolerance to this effect; 2) Norketamine potentiated morphine effectiveness in the alleviation of symptoms resulting from injury to nerve (mechanical hyperalgesia, tactile allodynia) and peripheral tissue (formalin-induced nociceptive behavior); 3) S(+)-norketamine was more potent than R(-)-norketamine; 4) Antinociception was not confounded by significant side effects. Morphine-S(+)-norketamine combination drug therapy may prove clinically useful for the alleviation of acute and chronic pain of differing etiology.
-
Pharmacol. Biochem. Behav. · Oct 2008
Effects of norketamine enantiomers in rodent models of persistent pain.
NMDA-receptor antagonists are potential drugs for chronic pain treatment, in particular for neuropathic pain involving central sensitization processes. Clinical use of available NMDA antagonists, such as ketamine, is limited for this indication due to its side effects (psychotomimetic, sedative, motor). There is a need for novel NMDA-receptor antagonist(s) with better analgesia/toxicity profile(s). ⋯ The antinociceptive properties resided primarily in the S(+) enantiomer. Antinociception was not accompanied by significant side effects. The present findings suggest that norketamine, in particular the S(+) enantiomer, might be a useful NMDA-receptor antagonist for treatment of chronic pain involving central sensitization.