Pharmacology, biochemistry, and behavior
-
Pharmacol. Biochem. Behav. · May 2020
Scaffold hopping of agomelatine leads to enhanced antidepressant effects by modulation of gut microbiota and host immune responses.
The mechanisms underlying the pathophysiology of depression remain elusive, and the development of novel, effective antidepressant drugs remains necessary. A dihydroquinoline analog of agomelatine (AGO), N-(2-(7-methoxy-3,4-dihydroisoquinolin-1-yl)ethyl)acetamide hydrochloride (NMDEA), was synthesized by employing a scaffold-hopping strategy in our previous study. In this study, NMDEA was demonstrated to attenuate depression-related behaviors in mice models of chronic unpredictable mild stress (CUMS), using a sucrose preference test, a forced swimming test, and a tail suspension test. ⋯ NMDEA suppressed the activation of IL-1β and IL-6, in the hippocampus, and IL-1β, IL-6, p65, and iNOS, in lipopolysaccharide (LPS)-induced BV-2 cells. These results suggested that NMDEA may affect the microbiota-inflammasome-brain axis, regulating relevant neuro-inflammatory markers and gut microbiota. Our data also suggested that using small molecules to modify the gut microbiota population or alter inflammasome signaling may represent a new therapeutic opportunity for the mitigation of depression.