Artificial intelligence in medicine
-
Pediatric guidelines based care is often overlooked because of the constraints of a typical office visit and the sheer number of guidelines that may exist for a patient's visit. In response to this problem, in 2004 we developed a pediatric computer based clinical decision support system using Arden Syntax medical logic modules (MLM). ⋯ Our results show that the Arden Syntax standard provided us with an effective way to represent pediatric guidelines for use in routine care. We only required minor modifications to the standard to support our clinical workflow. Additionally, Arden Syntax implementation in CHICA facilitated the study of many pediatric guidelines in real clinical environments.
-
Comparative Study Observational Study
Improving the anesthetic process by a fuzzy rule based medical decision system.
The main objective of this research is the design and implementation of a new fuzzy logic tool for automatic drug delivery in patients undergoing general anesthesia. The aim is to adjust the drug dose to the real patient needs using heuristic knowledge provided by clinicians. A two-level computer decision system is proposed. The idea is to release the clinician from routine tasks so that he can focus on other variables of the patient. ⋯ The FCL, designed with intuitive logic rules based on the clinician experience, performed satisfactorily and outperformed the manual administration in patients in terms of accuracy through the maintenance stage.
-
Identifying high-risk lung cancer individuals at an early disease stage is the most effective way of improving survival. The landmark National Lung Screening Trial (NLST) demonstrated the utility of low-dose computed tomography (LDCT) imaging to reduce mortality (relative to X-ray screening). As a result of the NLST and other studies, imaging-based lung cancer screening programs are now being implemented. However, LDCT interpretation results in a high number of false positives. A set of dynamic Bayesian networks (DBN) were designed and evaluated to provide insight into how longitudinal data can be used to help inform lung cancer screening decisions. ⋯ The lung cancer screening DBNs demonstrated high discrimination and predictive power with the majority of cancer and non-cancer cases.
-
This work aims at predicting the patient discharge outcome on each hospitalization day by introducing a new paradigm-evolving classification of event data streams. Most classification algorithms implicitly assume the values of all predictive features to be available at the time of making the prediction. This assumption does not necessarily hold in the evolving classification setting (such as intensive care patient monitoring), where we may be interested in classifying the monitored entities as early as possible, based on the attributes initially available to the classifier, and then keep refining our classification model at each time step (e.g., on daily basis) with the arrival of additional attributes. ⋯ Our experimental results have not identified a single optimal approach for evolving classification of ICU episodes. On Days 0 and 1, the IIN algorithm has produced the simplest and the most accurate models, which incorporate the temporal order of feature arrival. However, starting with Day 2, regenerative approaches have reached better performance in terms of predictive accuracy.