NMR in biomedicine
-
Accelerated parallel imaging (PI) techniques have recently been applied to functional imaging experiments of the human brain in order to improve the performance of commonly used single-shot techniques like echo-planar imaging (EPI). Potential benefits of PI-fMRI include the reduction of geometrical distortions due to off-resonance signals, the reduction of signal-loss in areas with substantial signal inhomogeneity, increases of the spatial and temporal resolution of the fMRI experiment and reduction of gradient acoustic noise. ⋯ Therefore, the penalty for using PI is generally not as severe as the SNR reduction. The majority of problems related to single-shot techniques become more severe at an increased magnetic field strength, making PI an important tool in achieving the full potential of fMRI at high field.
-
Cardiovascular MR imaging (CVMR) has become a valuable modality for the non-invasive detection and characterization of cardiovascular diseases. CVMR requires high imaging speed and efficiency, which is fundamentally limited in conventional cardiovascular MRI studies. With the introduction of parallel imaging, alternative means for increasing acquisition speed beyond these limits have become available. ⋯ Second, practical considerations such as coil array design, coil sensitivity calibrations, customized pulse sequences and tailored imaging parameters are outlined. Next, cardiovascular applications of parallel MR are reviewed, ranging from cardiac anatomical and functional assessment to myocardial perfusion and viability to MR angiography of the coronary arteries and the large vessels. Finally, current trends and future directions in parallel CVMR are considered.
-
Selective RF excitation is employed in magnetic resonance imaging (MRI) to achieve a variety of effects, such as slice selection. More elaborate transverse magnetization patterns can be realized via tailored RF excitation pulses, useful for example to image any specific region geometry within the field of view, or, to acquire non-Fourier encoded samples of the underlying magnetization distribution. ⋯ With the latter application it is possible to also consider the acceleration provided by parallel imaging alone as a compaction of information content, which in certain cases can be used to reduce the length of the selective excitations. The main contribution of this review is to show how the combination of selective excitation with parallel imaging provides the latter an added flexibility that can be used to either enhance image quality, increase imaging speed, or both.
-
This survey focuses on the fusion of two major lines of recent progress in MRI methodology: parallel imaging with receiver coil arrays and the transition to high and ultra-high field strength for human applications. As discussed in this paper, combining the two developments has vast potential due to multiple specific synergies. First, parallel acquisition and high field are highly complementary in terms of their individual advantages and downsides. ⋯ The underlying conceptual and theoretical considerations are reviewed in detail. In further sections, technical challenges and practical aspects are discussed. The feasibility of parallel MRI at ultra-high field is illustrated by current results of parallel human MRI at 7 T.
-
Parallel imaging has proven to be a robust solution to the problem of acquisition speed in MRI. These methods are based on extracting spatial information from an array of multiple surface coils in order to speed up image acquisition. ⋯ These methods all acquire the data for coil sensitivity estimation directly before, during or directly after the reduced data acquisition. After a review of standard methods for coil sensitivity estimation, some of the basic and advanced autocalibrating methods are reviewed, and some example applications shown.