NMR in biomedicine
-
The purpose of this study was to evaluate the use of a double delay alternating with nutation for tailored excitation (D-DANTE)-prepared sequence for banding-free isotropic high-resolution intracranial vessel wall imaging (IC-VWI) and to compare its performance with regular DANTE in terms of signal-to-noise ratio (SNR) as well as cerebrospinal fluid (CSF) and blood suppression efficiency. To this end, a D-DANTE-prepared 3D turbo spin echo sequence was implemented by interleaving two separate DANTE pulse trains with different RF phase-cycling schemes, but keeping all other DANTE parameters unchanged, including the total number of pulses and total preparation time. This achieved a reduction of the banding distance compared with regular DANTE enabling banding-free imaging up to higher resolutions. ⋯ Moreover, application was demonstrated in a patient with an intracranial aneurysm, indicating improved robustness to slow flow artifacts compared with clinically available 3D turbo spin echo scans. In conclusion, D-DANTE provides banding artifact-free IC-VWI up to higher isotropic resolutions compared with regular DANTE. This allows for a more flexible choice of DANTE preparation parameters in high-resolution IC-VWI protocols.
-
In vivo quantification of glutamate (Glu) and γ-aminobutyric acid (GABA) using MRS is often achieved using two separate sequences: a short-echo point resolved spectroscopy (PRESS) acquisition for Glu and a Mescher-Garwood PRESS (MEGA-PRESS) acquisition for GABA. The purpose of this study was to examine the agreement of Glu and Glx (the combined signal of glutamate + glutamine) quantified from two different GABA-edited MEGA-PRESS acquisitions (GABA plus macromolecules, GABA+, TE = 68 ms, and macromolecule suppressed, MMSup, TE = 80 ms) with Glu and Glx quantified from a short-echo PRESS (PRESS-35, TE = 35 ms) acquisition. Fifteen healthy male volunteers underwent a single scan session, in which data were acquired using the three acquisitions (GABA+, MMSup and PRESS-35) in both the sensorimotor and anterior cingulate cortices using a voxel size of 3 × 3 × 3 cm3. ⋯ In the sensorimotor cortex, Glu quantified from the OFF sub-spectra of GABA+ showed moderate agreement with PRESS-35 data, but this finding was not replicated in the anterior cingulate cortex. Glx and Glu quantified using the DIFF spectra of either MEGA-PRESS sequence were in poor agreement with the PRESS-35 data in both brain regions. In conclusion, Glx and Glu measured from MEGA-PRESS data generally showed poor agreement with Glx and Glu measured using PRESS-35.
-
Magnetic resonance imaging (MRI) in pregnancy is commonly undertaken in the left lateral tilt (LLT) position to prevent inferior vena cava (IVC) compression and supine hypotensive events, although this may be suboptimal for image quality. The supine position may also have an adverse effect on fetal well-being. The spinal venous plexus may provide an alternative pathway for venous return in the presence of IVC compression. ⋯ Women in the left lateral decubitus position who then rotated supine had greater flow in the IVC (p = 0.008) and spinal venous plexus (p = 0.029) than those who started supine. For the majority of women, the spinal venous plexus acts as a complementary venous return system for pregnant women in the supine position, maintaining vascular homeostasis. Further study is needed to assess the effects on the health of the fetus.
-
The primary lesion arising from the initial insult after traumatic brain injury (TBI) triggers a cascade of secondary tissue damage, which may also progress to connected brain areas in the chronic phase. The aim of this study was, therefore, to investigate variations in the susceptibility distribution related to these secondary tissue changes in a rat model after severe lateral fluid percussion injury. We compared quantitative susceptibility mapping (QSM) and R2 * measurements with histological analyses in white and grey matter areas outside the primary lesion but connected to the lesion site. ⋯ QSM showed quantitative changes attributed to secondary damage in areas located rostral to the lesion site that appeared normal in R2 * maps. However, combination of QSM and R2 * was informative in disentangling the underlying tissue changes such as iron accumulation, demyelination, or calcifications. Therefore, combining QSM with R2 * measurement can provide a more detailed assessment of tissue changes and may pave the way for improved diagnosis of TBI, and several other complex neurodegenerative diseases.
-
Quantitative mapping of MR tissue parameters such as the spin-lattice relaxation time (T1 ), the spin-spin relaxation time (T2 ), and the spin-lattice relaxation in the rotating frame (T1ρ ), referred to as MR relaxometry in general, has demonstrated improved assessment in a wide range of clinical applications. Compared with conventional contrast-weighted (eg T1 -, T2 -, or T1ρ -weighted) MRI, MR relaxometry provides increased sensitivity to pathologies and delivers important information that can be more specific to tissue composition and microenvironment. The rise of deep learning in the past several years has been revolutionizing many aspects of MRI research, including image reconstruction, image analysis, and disease diagnosis and prognosis. ⋯ In Section 3, we review existing "classical" methods for accelerating MR relaxometry, including state-of-the-art spatiotemporal acceleration techniques, model-based reconstruction methods, and efficient parameter generation approaches. Section 4 then presents how deep learning can be used to improve MR relaxometry and how it is linked to conventional techniques. The final section concludes the review by discussing the promise and existing challenges of deep learning for rapid MR relaxometry and potential solutions to address these challenges.