NMR in biomedicine
-
Quantitative mapping of MR tissue parameters such as the spin-lattice relaxation time (T1 ), the spin-spin relaxation time (T2 ), and the spin-lattice relaxation in the rotating frame (T1ρ ), referred to as MR relaxometry in general, has demonstrated improved assessment in a wide range of clinical applications. Compared with conventional contrast-weighted (eg T1 -, T2 -, or T1ρ -weighted) MRI, MR relaxometry provides increased sensitivity to pathologies and delivers important information that can be more specific to tissue composition and microenvironment. The rise of deep learning in the past several years has been revolutionizing many aspects of MRI research, including image reconstruction, image analysis, and disease diagnosis and prognosis. ⋯ In Section 3, we review existing "classical" methods for accelerating MR relaxometry, including state-of-the-art spatiotemporal acceleration techniques, model-based reconstruction methods, and efficient parameter generation approaches. Section 4 then presents how deep learning can be used to improve MR relaxometry and how it is linked to conventional techniques. The final section concludes the review by discussing the promise and existing challenges of deep learning for rapid MR relaxometry and potential solutions to address these challenges.
-
An algorithm for retrospective correction of frequency and phase offsets in MRS data is presented. The algorithm, termed robust spectral registration (rSR), contains a set of subroutines designed to robustly align individual transients in a given dataset even in cases of significant frequency and phase offsets or unstable lipid contamination and residual water signals. Data acquired by complex multiplexed editing approaches with distinct subspectral profiles are also accurately aligned. ⋯ Algorithm performance was assessed on one simulated and 67 in vivo pediatric GABA-/GSH-edited HERMES datasets and compared with the performance of a multistep correction method previously developed for aligning HERMES data. The performance of the novel approach was quantitatively assessed by comparing the estimated frequency/phase offsets against the known values for the simulated dataset or by examining the presence of subtraction artifacts in the in vivo data. Spectral quality was improved following robust alignment, especially in cases of significant spectral distortion. rSR reduced more subtraction artifacts than the multistep method in 64% of the GABA difference spectra and 75% of the GSH difference spectra. rSR overcomes the major challenges of frequency and phase correction.
-
To develop a novel respiratory motion compensated three-dimensional (3D) cardiac magnetic resonance fingerprinting (cMRF) approach for whole-heart myocardial T1 and T2 mapping from a free-breathing scan. ⋯ The proposed 3D cMRF can provide whole-heart, simultaneous and co-registered T1 and T2 maps with accuracy and precision comparable to those of clinical standards in a single free-breathing scan of about 7 min.