NMR in biomedicine
-
Comparative Study
Enhanced sensitivity with fast three-dimensional blood-oxygen-level-dependent functional MRI: comparison of SENSE-PRESTO and 2D-EPI at 3 T.
A major impetus in functional MRI development is to enhance sensitivity to changes in neural activity. One way to improve sensitivity is to enhance contrast to noise ratio, for instance by increasing field strength or the number of receiving coils. If these parameters are fixed, there is still the possibility to optimize scans by altering speed or signal strength [signal-to-noise ratio (SNR)]. ⋯ The percentage signal change and relative standard deviation of the noise were smaller for PRESTO-SENSE. Sensitivity for brain activation, as reflected by T-values, was consistently higher for PRESTO, and this seemed to be mainly due to the increased number of observations within a fixed time period. We conclude that PRESTO accelerated with SENSE in two directions can be more sensitive to BOLD signal changes than the widely used 2D-EPI, when a fixed amount of time is available for functional MRI scanning.
-
Magnetic resonance elastography (MRE) is a non-invasive imaging technique used to visualise and quantify mechanical properties of tissue, providing information beyond what can be currently achieved with standard MR sequences and could, for instance, provide new insight into pathological processes in the brain. This study uses the MRE technique at 3 T to extract the complex shear modulus for in vivo brain tissue utilizing a full three-dimensional approach to reconstruction, removing contributions of the dilatational wave by application of the curl operator. ⋯ The results provide data for in vivo brain storage modulus (G'), finding grey matter (3.1 kPa) to be significantly stiffer than white matter (2.7 kPa). The first in vivo loss modulus (G'') measurements show no significant difference between grey matter (2.5 kPa) and white matter (2.5 kPa).
-
To investigate the feasibility of blood flow imaging in the parotid gland using the arterial spin labeling (ASL) technique for assessment of functional changes in the parotid gland after gustatory stimulation. ⋯ ASL FAIR TrueFISP is feasible for functional characterization of the parotid glands. Assessment of changes in blood flow in the parotid gland could serve as a diagnostic tool in patients suffering from xerostomia.
-
This paper assesses the reliability of the infinite cylinder model used previously in the literature to simulate blood oxygenation level dependent (BOLD) signal changes. A three-dimensional finite element method was applied to a realistic model of the cortical vasculature, and the results compared with those generated from a simple model of the vasculature as a set of independent, randomly oriented, infinite cylinders. ⋯ Using the realistic model, it is also possible to gain further understanding of the relative importance of intravascular and extravascular BOLD contrast. A simple parameterisation of the dependence of the relaxation rates on relative cerebral blood volume and blood-tissue susceptibility difference was carried out, allowing discussion of the variation in the form of the haemodynamic response with field strength.
-
High fractional anisotropy (FA) usually reflects the orientation and integrity of white matter (WM) fibers. Other regions of increased FA have been described, such as brain abscesses, developing cortex, and areas of hemorrhage. It may not be possible to differentiate true fibers from the pseudofibers found inside an abscess cavity on the basis of FA and mean diffusivity (MD). ⋯ The 95% confidence intervals of means for the abscess cavity were well separated from those for WM in the case of CL and CP; however, they overlapped in the case of FA, MD, and CS. High CP with low CL inside the abscess cavity suggests that the shape of the diffusion tensor is predominantly planar, whereas it is linear in WM tracts. These geometrical indices may have advantages over FA for differentiating true from pseudo WM tracts inside the abscess cavity.