NMR in biomedicine
-
Comparative Study
Central nervous system inflammatory response after cerebral infarction as detected by magnetic resonance imaging.
Brain inflammation contributes to the tissue injury caused by ischemic stroke. Macrophages as the most abundant inflammatory cell population in stroke lesions can be visualized using ultrasmall superparamagnetic iron oxide (USPIO) as a cell-specific contrast agent for magnetic resonance imaging (MRI). The aim of our present study was to delineate the inflammatory response during experimental cerebral infarction by means of USPIO-enhanced MRI and to correlate the spatial distribution of USPIO-induced MR signal alterations with cellular infiltration and iron deposition. ⋯ MR imaging at 7 T performed 24 h later displayed a rim-like signal loss around the infarction in the USPIO treated animals. On histological brain sections obtained from the same animals after MRI the distribution of iron and ED1+ phagocytes was in full spatial agreement with the signal loss seen on T2*-weighted images. Our study validates USPIO-enhanced MRI as an important tool for the noninvasive visualization of brain inflammation in stroke and other CNS pathologies.
-
Comparative Study Clinical Trial
Identification of MRI and 1H MRSI parameters that may predict survival for patients with malignant gliomas.
Although MR imaging (MRI) and MR spectroscopic imaging (MRSI) have been applied in the diagnosis and treatment planning for brain tumors, their prognostic significance has not yet been determined. The goal of this study was to identify pre-treatment MRI and MRSI parameters for patients with malignant glioma that may be useful in predicting survival. Two populations of patients with newly-diagnosed malignant glioma were examined with MRI and three-dimensional proton ((1)H) MRSI. ⋯ The parameters that were selected by recursive partitioning as being predictive of poor outcome were older age, larger contrast enhancement, higher Cho-to-Cr, higher Cho-to-NAA, higher LL and lower Cr-to-NAA abnormalities. The survival functions were significantly different between the sub-groups of patients obtained from the survival tree for both pre-surgery and post-surgery data. The results of this study suggest that pre-treatment MRI and three-dimensional (1)H-MRSI provide information that predicts outcome for patients with malignant gliomas and have drawn attention to variables that should be examined prospectively in future studies using these techniques.
-
Comparative Study Clinical Trial
Proton T1 relaxation times of cerebral metabolites differ within and between regions of normal human brain.
Saturation recovery spectra (STEAM) were acquired at 1.5 T with 7 TRs ranging from 530 to 5000 ms and a constant TE of 30 ms in voxels (7.2 ml) located in occipital grey, parietal white and frontal white matter (10 subjects each location). Spectra were also acquired at 7, 21 and 37 degrees C from separate 100 mm solutions of inositol (Ins), choline-containing compounds (Cho), N-acetyl-aspartate (NAA) and creatine. Simulations of T(1) fits with 2, 3 and 7 TRs demonstrated that at typical SNR there is potential for both inaccurate and biased results. ⋯ The order (Ins, NAA, creatine, Cho) was found in the metabolite solutions and was consistent with a simple model in which T(1) is inversely proportional to molecular weight. For all individual metabolites, T(1) increased from occipital grey to parietal white to frontal white matter. This study demonstrates that, in spectra acquired with TR near 1 s, T(1) weightings are substantially different for metabolites within a single tissue and also for the same metabolites in different tissues.
-
Clinical Trial
Evaluation of two-dimensional L-COSY and JPRESS using a 3 T MRI scanner: from phantoms to human brain in vivo.
Localized versions of two-dimensional (2D) magnetic resonance spectroscopic (MRS) sequences, namely JPRESS and L-COSY, have been implemented on a whole-body 3T MRI/MRS scanner. Volume selection was achieved using three slice-selective radio-frequency (RF) pulses: 90 degrees-180 degrees-180 degrees in JPRESS and 90 degrees-180 degrees-90 degrees in L-COSY with a CHESS sequence prior to voxel localization for global water suppression. The last 180 degrees RF pulse was used for resolving the J-coupled cross peaks in JPRESS, whereas the last 90 degrees RF pulse was used for coherence transfer between J-coupled metabolites in L-COSY. ⋯ Compared with 2D L-COSY, reduced spectral width along the second spectral dimension and shorter 2D spectral acquisition were the major advantages of 2D JPRESS. In contrast, increased spectral width along the new spectral dimension in L-COSY resulted in an improved spectral dispersion enabling the detection of several brain metabolites at low concentrations that have not been resolved using the conventional one-dimensional (1D) MRS techniques. Due to increased sampling rate, severe loss of metabolite signals due to T2 during t1 was a major drawback of 2D JPRESS in vivo.
-
Water diffusion in brain tissue is affected by the presence of barriers to translational motion such as cell membranes and myelin fibers. The measured water apparent diffusion coefficient (ADC) value is therefore frequently anisotropic and varies depending upon the orientation of restricting barriers (such as white matter tracts) relative to the diffusion-sensitive-gradient direction. Anisotropic water diffusion can be specified using indices of diffusion anisotropy [e.g. standard deviation of the individual ADC values, fractional anisotropy (FA), lattice index (LI)], which are derived from measurements of the full diffusion tensor. ⋯ However, variations in the differential patterns of
and diffusion anisotropy evolution have been observed by a number of investigators and more work is needed to clarify the role of these measurements in characterizing the severity of the ischemic insult as well as the potential outcome in response to the initial ischemic injury. The use of DTI, in combination with more sophisticated analysis methods for performing multiparametric segmentation, such as multispectral analysis, may enhance the use of MRI for accurate diagnosis and prognosis of stroke. Furthermore, these techniques may also play an important role in the clinical evaluation of new stroke treatments.