NMR in biomedicine
-
Major depressive disorder (MDD) is a globally prevalent psychiatric disorder that results from disruption of multiple neural circuits involved in emotional regulation. Although previous studies using diffusion tensor imaging (DTI) found smaller values of fractional anisotropy (FA) in the white matter, predominantly in the frontal lobe, of patients with MDD, studies using diffusion kurtosis imaging (DKI) are scarce. Here, we used DKI whole-brain analysis with tract-based spatial statistics (TBSS) to investigate the brain microstructural abnormalities in MDD. ⋯ Model analysis suggested significantly smaller values of intra-neurite signal fraction in the body of the callosum and greater fiber dispersion in the genu, which were compatible with the existing literature of white matter pathology in MDD. Our results show that DKI is capable of demonstrating microstructural alterations in the brains of patients with MDD that cannot be fully depicted by conventional DTI. Though the issues of model validation and parameter estimation still remain, it is suggested that diffusion MRI combined with a biophysical model is a promising approach for investigation of the pathophysiology of MDD.
-
Comparative Study
Comparison of reproducibility of single voxel spectroscopy and whole-brain magnetic resonance spectroscopy imaging at 3T.
To date, single voxel spectroscopy (SVS) is the most commonly used MRS technique. SVS is relatively easy to use and provides automated and immediate access to the resulting spectra. However, it is also limited in spatial coverage. ⋯ Significant positive correlations were observed between metabolites quantified using SVS and WB-MRSI techniques when the Cr but not H2 O reference was used. The results demonstrate that reproducibilities of SVS and WB-MRSI are similar for quantifying the four major metabolites (NAA, Cr, Cho, mI); both SVS and WB-MRSI exhibited good reproducibility. Our findings add reference information for choosing the appropriate 1 H-MRS technique in future studies.
-
Given the growing popularity of T1 -weighted/T2 -weighted (T1 w/T2 w) ratio measurements, the objective of the current study was to evaluate the concordance between T1 w/T2 w ratios obtained using conventional fast spin echo (FSE) versus combined gradient and spin echo (GRASE) sequences for T2 w image acquisition, and to compare the resulting T1 w/T2 w ratios with histologically validated myelin water fraction (MWF) measurements in several subcortical brain structures. In order to compare these measurements across a relatively wide range of myelin concentrations, whole-brain T1 w magnetization prepared rapid acquisition gradient echo (MPRAGE), T2 w FSE and three-dimensional multi-echo GRASE data were acquired from 10 participants with multiple sclerosis at 3 T. Then, after high-dimensional, non-linear warping, region of interest (ROI) analyses were performed to compare T1 w/T2 w ratios and MWF estimates (across participants and brain regions) in 11 bilateral white matter (WM) and four bilateral subcortical grey matter (SGM) structures extracted from the JHU_MNI_SS 'Eve' atlas. ⋯ Overall, our findings indicated a high degree of correlation (but not equivalence) between FSE-based and GRASE-based T1 w/T2 w ratios, and low correlations between T1 w/T2 w ratios and MWFs. This suggests that the two T1 w/T2 w ratio approaches measure similar facets of subcortical tissue microstructure, whereas T1 w/T2 w ratios and MWFs appear to be sensitized to different microstructural properties. On this basis, we conclude that multi-echo GRASE sequences can be used in future studies to efficiently elucidate both general (T1 w/T2 w ratio) and myelin-specific (MWF) tissue characteristics.
-
γ-Aminobutyric acid (GABA) and glutamate (Glu), major neurotransmitters in the brain, are recycled through glutamine (Gln). All three metabolites can be measured by magnetic resonance spectroscopy in vivo, although GABA measurement at 3 T requires an extra editing acquisition, such as Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS). In a GABA-edited MEGA-PRESS spectrum, Glu and Gln co-edit with GABA, providing the possibility to measure all three in one acquisition. ⋯ Simultaneous criteria of NAA linewidth <8 Hz and Glx CRLB <16% were defined as optimum features for reliable Glu and Gln quantification. Glu and Gln can be reliably quantified from GABA-edited MEGA-PRESS acquisitions. However, this reliability should be controlled using the quality assessment methods suggested in this work.
-
Glutamine (Gln), glutamate (Glu) and γ-aminobutyric acid (GABA) are relevant brain metabolites that can be measured with magnetic resonance spectroscopy (MRS). This work optimizes the point-resolved spectroscopy (PRESS) sequence echo times, TE1 and TE2 , for improved simultaneous quantification of the three metabolites at 9.4 T. Quantification was based on the proton resonances of Gln, Glu and GABA at ≈2.45, ≈2.35 and ≈2.28 ppm, respectively. ⋯ The optimal TE resulted in concentrations for Gln and GABA that agreed more closely with literature concentrations compared with concentrations obtained from short-TE spectra acquired with a {TE1 , TE2 } combination of {12 ms, 9 ms}. LCModel estimations were also evaluated with short-TE PRESS and with the optimized long TE of {106 ms, 16 ms}, using phantom solutions of known metabolite concentrations. It was shown that concentrations estimated with LCModel can be inaccurate when combined with short-TE PRESS, where there is peak overlap, even when low (<20%) CRLBs are reported.