The European journal of neuroscience
-
Previous results point towards a lateralization of dorsolateral prefrontal cortex (DLPFC) function in risky decision making. While the right hemisphere seems involved in inhibitory cognitive control of affective impulses, the left DLPFC is crucial in the deliberative processing of information relevant for the decision. However, a lack of empirical evidence precludes definitive conclusions. ⋯ Anodal left/cathodal right stimulation decreased risk-taking in the 'cold' cognition version of the task, in both groups, probably by modulating deliberative processing. In the 'hot' version, anodal right/cathodal left stimulation led to opposite effects in smokers and non-smokers, which might be explained by the engagement of the same inhibitory control mechanism: in smokers, improved controllability of risk-seeking impulsivity led to more conservative decisions, while inhibition of risk-aversion in non-smokers resulted in riskier choices. These results provide evidence for a hemispheric asymmetry and personality-dependent tDCS effects in risky decision making, and may be important for clinical research on addiction and depression.
-
The present study aims to investigate the potential of brief electrical stimulation (ES; 3 V, 20 Hz, 20 min) in improving functional recovery in delayed nerve injury repair (DNIR). The sciatic nerve of Sprague Dawley rats was transected, and the repair of nerve injury was delayed for different time durations (2, 4, 12 and 24 weeks). Brief depolarizing ES was applied to the proximal nerve stump when the transected nerve stumps were bridged with a hollow nerve conduit (5 mm in length) after delayed periods. ⋯ In addition, the amplitude of compound muscle action potential (gastrocnemius muscle) and nerve conduction velocity were also enhanced, and gastrocnemius muscle atrophy was partially reversed by brief ES, indicating that brief ES to proximal nerve stump was able to improve functional recovery in DNIR. Furthermore, brief ES was capable of increasing brain-derived neurotrophic factor (BDNF) expression in the spinal cord in DNIR, suggesting that BDNF-mediated neurotrophin signaling might be one of the contributing factors to the beneficial effect of brief ES on DNIR. In conclusion, the present findings indicate the potential of using brief ES as a useful method to improve functional recovery for delayed repair of peripheral nerve lesions.
-
Microglial cell plays a crucial role in the development and establishment of chronic neuropathic pain after spinal cord injuries. As neuropathic pain is refractory to many treatments and some drugs only present partial efficacy, it is essential to study new targets and mechanisms to ameliorate pain signs. For this reason we have used glibenclamide (GB), a blocker of KATP channels that are over expressed in microglia under activation conditions. ⋯ Our results indicate that a single dose of GB (1 μg) injected after spinal cord injury is sufficient to promote long-lasting functional improvements in locomotion and coordination. Nevertheless, the Randall-Selitto test measurements indicate that these improvements are accompanied by enhanced mechanical hyperalgesia. In vitro results indicate that GB may influence microglial phagocytosis and therefore this action may be at the basis of the results obtained in vivo.
-
Dopaminergic neurons of the substantia nigra compacta (SNC), ventral tegmental area (VTA) and retrorubral field (RRF) play a role in reward, motivation, learning, memory, and movement. These neurons are intermingled with GABAergic neurons. Recent evidence shows that the VTA contains glutamatergic neurons expressing vesicular glutamate transporter type 2 (VGluT2); some of them co-express tyrosine hydroxylase (TH). ⋯ Within the RRF, the VGluT2 neurons showed an increasing rostrocaudal gradient of distribution. The RRF proportion of VGluT2 neurons in relation to TH neurons was constant throughout the rostrocaudal levels, showing an average ratio of one VGluT2 neuron per 1.7 TH neurons. In summary, we provide evidence indicating that the SNC and RRF, which are traditionally considered to be dopaminergic areas, have neurons with the ability to participate in glutamate signaling.
-
Adult central nervous system axons show restricted growth and regeneration properties after injury. One of the underlying mechanisms is the activation of the Nogo-A/Nogo receptor (NgR1) signaling pathway. Nogo-A knockout (KO) mice show enhanced regenerative growth in vivo, even though it is less pronounced than after acute antibody-mediated neutralization of Nogo-A. ⋯ EphA4 KO cortical neurons show decreased growth inhibition on Nogo-A KO myelin as compared with WT neurons, supporting increased EphA4-mediated growth inhibition in Nogo-A KO mice. Consistently, in vivo, Nogo-A/EphA4 double KO mice show increased axonal sprouting and regeneration after spinal cord injury as compared with EphA4 KO mice. Our results reveal the upregulation of developmental axon guidance cues following constitutive Nogo-A deletion, e.g. the EphrinA3/EphA4 ligand/receptor pair, and support their role in restricting neurite outgrowth in the absence of Nogo-A.