Progress in neurobiology
-
Not later than two synapses after their arrival in the cerebellar cortex all excitatory afferent signals are subsequently transformed into inhibitory ones. Guaranteed by the exceedingly ordered and stereotyped synaptic arrangement of its cellular elements, the cerebellar cortex transmits this inhibitory result of cerebellar integration exclusively via Purkinje cells (PCs) in a precise temporal succession directly onto the target neurons of the deep cerebellar and vestibular nuclei. Thus the cerebellar cortex seems to produce a temporal pattern of inhibitory influence on these target neurons that modifies their excitatory action in such a way that an activation of muscle fibers occurs which progressively integrates the intended motion into the actual condition of the motoric inventory. ⋯ This is substantiated by stereotaxic removal of the remaining PC input, which eliminates the influence of the first mechanism and is able to induce the second strategy. As a consequence, motor performance improves considerably. In this review, results leading to the above conclusions are presented and links forged to human cerebellar diseases.
-
Mammalian tissues contain at least two types of cannabinoid receptor, CB(1) and CB(2), both coupled to G proteins. CB(1) receptors are expressed mainly by neurones of the central and peripheral nervous system whereas CB(2) receptors occur centrally and peripherally in certain non-neuronal tissues, particularly in immune cells. The existence of endogenous ligands for cannabinoid receptors has also been demonstrated. ⋯ This review summarizes current knowledge about the ability of cannabinoids to produce antinociception in animal models of acute pain as well as about the ability of these drugs to suppress signs of tonic pain induced in animals by nerve damage or by the injection of an inflammatory agent. Particular attention is paid to the types of pain against which cannabinoids may be effective, the distribution pattern of cannabinoid receptors in central and peripheral pain pathways and the part that these receptors play in cannabinoid-induced antinociception. The possibility that antinociception can be mediated by cannabinoid receptors other than CB(1) and CB(2) receptors, for example CB(2)-like receptors, is also discussed as is the evidence firstly that one endogenous cannabinoid, anandamide, produces antinociception through mechanisms that differ from those of other types of cannabinoid, for example by acting on vanilloid receptors, and secondly that the endocannabinoid system has physiological and/or pathophysiological roles in the modulation of pain.