Progress in neurobiology
-
Progress in neurobiology · Apr 2005
ReviewNeural plasticity and bilateral movements: A rehabilitation approach for chronic stroke.
Stroke interferes with voluntary control of motor actions. Although spontaneous recovery of function can occur, restoration of normal motor function in the hemiplegic upper limb is noted in fewer than 15% of individuals. However, there is increasing evidence to suggest that in addition to injury-related reorganization, motor cortex functions can be altered by individual motor experiences. ⋯ This review proposes that noteworthy upper extremity gains toward motor recovery evolve from activity-dependent intervention based on theoretical motor control constructs and interlimb coordination principles. Founded on behavioral and neurophysiological mechanisms, bilateral movement training/practice has shown great promise in expediting progress toward chronic stroke recovery in the upper extremity. Planning and executing bilateral movements post-stroke may facilitate cortical neural plasticity by three mechanisms: (a) motor cortex disinhibition that allows increased use of the spared pathways of the damaged hemisphere, (b) increased recruitment of the ipsilateral pathways from the contralesional or contralateral hemisphere to supplement the damaged crossed corticospinal pathways, and (c) upregulation of descending premotorneuron commands onto propriospinal neurons.