Journal of molecular neuroscience : MN
-
The current research aimed to investigate the role of hypoxia-inducible factor-1α (HIF-1α), aquaporin-4 (AQP-4), and matrix metalloproteinase-9 (MMP-9) in blood-brain barrier (BBB) dysfunction and cerebral edema formation in a rat subarachnoid hemorrhage (SAH) model. The SAH model was induced by injection of 0.3 ml fresh arterial, non-heparinized blood into the prechiasmatic cistern in 20 s. Anti-AQP-4 antibody, minocycline (an inhibitor of MMP-9), or 2-methoxyestradiol (an inhibitor of HIF-1α), was administered intravenously at 2 and 24 h after SAH. ⋯ Finally, inhibition of HIF-1α significantly suppressed the level of AQP-4 and MMP-9, which could induce the expression of laminin and tight junction proteins. Our results suggest that HIF-1α plays a role in brain edema formation and BBB disruption via a molecular signaling pathway involving AQP-4 and MMP-9. Pharmacological intervention of this pathway in patients with SAH may provide a novel therapeutic strategy for early brain injury.
-
The trigeminal ganglion (TG) can express and release calcitonin gene-related peptide (CGRP), an important neuropeptide that plays a crucial role in migraine attack and cluster headache. Activation of rat TG increases CGRP expression. However, the regulatory mechanism of CGRP expression in TG neurons remains to be explored. ⋯ However, they decreased markedly after rat TG pretreatment with PD98059 (ERK1/2 inhibitor), SB203580 (P38 inhibitor), or SP600125 (JNK inhibitor) compared with rat TG co-culture with TNF-α or IL-1β. In conclusion, the elevated CGRP expression after rat TG organ culture can be regulated via MAPK pathways. The findings provide insight into the molecular mechanisms and experimental evidence for therapeutic targets of migraine.
-
Induction of demyelination in the central nervous system induce the oligodendrocyte progenitors to proliferate, migrate, and differentiate for restoring new myelin sheathes around demyelinated axons. Factors which increase the response of endogenous progenitor cells could be used to improve remyelination. In the current study, the effect of bFGF on lysolecithin-induced demyelination and remyelination processes in mouse optic chiasm and nerves was investigated. ⋯ Lysolecithin decreased MBP and increased Olig2 expression in different days post-lesion. Lysolecithin-induced changes in VEPs were partially ameliorated by endogenous repair. bFGF reduced the increased delay, increased the reduced amplitude of P1-N1 wave, increased MBP gene expression, and accelerated the increasing pattern of Olig2. bFGF seems to be able to potentiate the endogenous repair mechanisms of myelin. Its effect on demyelination and remyelination processes seems to be mediated by oligodendrocyte progenitor cells and their differentiation to myelinating cells.