Journal of molecular neuroscience : MN
-
Transient receptor potential subfamily V, member 1 (TRPV1) is a nonselective cation channel expressed in both the peripheral and central nervous systems (CNS). TRPV1 protein levels in rat tissues were determined under normal and pain states using enzyme-linked immunosorbent assay. In naive rats, brain TRPV1 protein concentrations ranged from 1.5 to 4 ng/mg in hippocampus, cortex, hypothalamus, and cerebellum. ⋯ TRPV1 protein levels also increased 33.3 % (p < 0.05) on the ipsilateral sciatic nerve, but no significant change in the lumbar spinal cord of CFA rats. In the monoiodoacetate-induced rat knee joint pain model, TRPV1 protein level was significantly reduced in the ipsilateral L3-L5 DRG (33.3 %, p < 0.01), no significant difference was detected in the lumbar region of the spinal cord. Quantitative determination of TRPV1 protein levels may help to elucidate the TRPV1 physiological roles and regulatory mechanisms in various pain states.
-
Either sleep deprivation or Western diet can impair learning and memory via induction of oxidative stress, which results in neuronal damage and interference with the neurotransmission. In this study, we examined the combined effect of sleep deprivation and Western diet on hippocampus-dependent spatial learning and memory. In addition, possible molecular targets for sleep deprivation and Western diet-induced cognitive impairments were investigated. ⋯ In addition, the combined treatment reduced the levels of hippocampal BDNF, a reduction that was not detected with each factor alone. Moreover, the combined treatment reduced the hippocampal activities of SOD, catalase, GPx, ratio of GSH/GSSG, and elevated TBARS level (P < 0.05). In conclusion, the combination of sleep deprivation and Western diet decreases BDNF levels and increases oxidative stress in the hippocampus, thus inducing memory impairment that is greater than the impairment produced by each factor alone.
-
The cerebrospinal fluid-contacting nucleus (CSF-CN) may influence actual composition of the CSF for non-synaptic signal transmission via releasing or absorbing bioactive substances, which distributes and localizes in the ventral periaqueductal central gray of the brainstem. Previous studies demonstrated that CSF-CN was involved in neuropathic pain and morphine dependence. Thus, to identify whether extracellular signal-regulated kinase 5 (ERK5) distributed in the CSF-CN and its function on the formation and development of morphine physical dependence, morphine withdrawal-like behavioral test and immunofluorescent technique were used in this research. ⋯ ERK5 signaling pathway was remarkably activated by naloxone-precipitated withdrawal in the CSF-CN. Moreover, selective attenuation of p-ERK5 expression in the CSF-CN by lateral ventricle injection of BIX02188 could significantly relieve morphine withdrawal symptom. These findings confirmed that the activation of p-ERK5 in the CSF-CN might contribute to morphine physical dependence.