Journal of molecular neuroscience : MN
-
The chemokine C-C motif ligand 2 (CCL2) is an important mediator of neuroinflammation. Released in response to acute injury, ischemia, and neurodegenerative disease, CCL2 binds primarily to the G-protein-coupled chemokine C-C motif receptor 2 (CCR2) to recruit inflammatory cells to sites of tissue damage. Inflammation is thought to have both beneficial and deleterious consequences following traumatic brain injury (TBI), so we investigated CCL2-CCR2 signaling during the post-TBI period to assess possible neurodegenerative and protective actions. ⋯ The CCL2 protein was mainly co-localized with the astroglial marker glial fibrillary acidic protein and CCR2 protein with the neuronal nuclear marker NeuN as revealed by double immunofluorescence staining. A selective CCR2 antagonist, RS504393, reduced TUNEL staining, a marker of apoptosis, and improved performance in the Morris water maze 3 days post-TBI, suggesting that CCL2-CCR2 signaling has deleterious effects on neuronal survival and learning. Targeting the CCL2-CCR2 pathway may provide a novel therapeutic approach for the treatment of TBI.
-
Salvianolic acid B (Sal B), a bioactive compound isolated from the Chinese medicinal herb danshen, is commonly used for the prevention and treatment of cardiovascular disease. The present study was performed to investigate the effect of Sal B on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a rat model. Sal B (1, 10, and 50 mg/kg i.v.) was administered to rats immediately following SCI. ⋯ The expression of pro-inflammatory factors TNF-α and NF-κB was found to be greatly increased 24 h post-SCI, and this upregulation was significantly attenuated by Sal B treatment. The expression of ZO-1 and occludin was upregulated by Sal B (10 mg/kg) treatment after SCI, and this effect was blocked by the HO-1 inhibitor ZnPP. Taken together, our results clearly indicate that Sal B attenuates SCI by promoting the repair of the damaged BSCB, demonstrating that this molecule is a novel and promising therapeutic agent for human SCI.
-
Temporomandibular disorders (TMD) comprise an assortment of clinical conditions characterized by pain in the temporomandibular joint (TMJ). TMD patients have a variety of symptoms, including jaw movement disorder and TMJ pain. Metabotropic glutamate receptor subtype 5 (mGluR5) was reported to be involved in pain processing in several animal models of neuropathic and inflammatory pain. ⋯ Significant differences in the proportion or intensity of mGluR5 expression were found in animals with inflammation versus control animals at the examined time point. These findings indicate a role for peripheral mGluR5 in CFA-induced nociceptive behavior and TMJ inflammation. Peripheral application of mGluR5 antagonists could provide therapeutic benefits for inflammatory TMJ pain.
-
Morphine is widely used for the treatment of severe acute and chronic pain, but long-term therapy rapidly leads to tolerance. Morphine effects are mediated by μ opioid receptor (MOP) activation as well as for fentanyl that, in contrast to morphine, induces less tolerance to analgesia. The mechanisms underlying opioid tolerance involve complex processes, such as MOP desensitization, internalization, and/or changes of gene expression. ⋯ Fentanyl induced no changes of NOP gene expression. The present findings showed a different effect by morphine and fentanyl on MOP mRNA levels that contributes to define the role of MOP gene expression changes in the mechanisms underlying the tolerance. Morphine also triggers an altered NOP-related signaling confirming that the nociceptin/orphanin FQ-nociceptin receptor system also plays a significant role in the development of morphine tolerance.