Journal of molecular neuroscience : MN
-
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss, caused by misfolding and accumulation of tau and Amyloid β-42. Cellular mechanisms involving phosphatases, chaperones, ubiquitin proteasome system (UPS) and aggresomes solubilize or remove these toxic aggregates. Chaperones such as Hsp70 and Hsp90 functions in folding tau to its native form or in the downstream degrade and eliminated tau from the cell. ⋯ In this scenario, inhibiting the chaperone activity would aid in overcoming AD. Small molecules inhibitors against chaperone activity are known to be effective in the clearance of aberrant tau from cell. In this review, the aspects of inhibition and prevention of tau aggregates formation are discussed in terms of chaperone activity and their small molecule modulators.
-
Ferroptosis is a recently defined form of cell death with the involvement of iron and reactive oxygen species (ROS), which is distinct from apoptosis, autophagy and other forms of cell death. Emerging evidence suggested that iron accumulation and lipid peroxidation can be discovered in various neurological diseases, accompanied with reduction of glutathione (GSH) and glutathione peroxidase 4 (GPX4). ⋯ This review summarizes the mechanisms underlying ferroptosis and reviews the contributions of ferroptosis in neurodegenerative diseases (i.e. Alzheimer's disease and Parkinson's disease), traumatic brain injury, as well as hemorrhagic and ischemic stroke, to provide the current understanding of this novel form of cell death in neurological disorders.
-
The aggregation of disease-specific misfolded proteins resulting in endoplasmic reticulum stress is associated with early pathological events in many neurodegenerative diseases, and apoptotic signaling is initiated when the stress goes beyond the maximum threshold level of endoplasmic reticulum stress sensors. All eukaryotic cells respond to the accumulation of unfolded proteins in the endoplasmic reticulum (ER) by signaling an adaptive pathway termed as unfolded protein response (UPR). ⋯ The UPR acts as a protective mechanism during endoplasmic reticulum stress, but persistent long-term stress triggers UPR-mediated apoptotic pathways ultimately leading to cell death. Here in this review, we will briefly summarize the molecular events of endoplasmic reticulum stress-associated UPR signaling pathways and their potential therapeutic role in neurodegenerative diseases.
-
Anxiety disorders are frequently long-lasting and debilitating for more than 40 million American adults. Although stressor exposure plays an important role in the etiology of some anxiety disorders, the mechanisms by which exposure to stressful stimuli alters central circuits that mediate anxiety-like emotional behavior are still unknown. Substantial evidence has implicated regions of the central extended amygdala, including the bed nucleus of the stria terminalis (BNST) and the central nucleus of the amygdala as critical structures mediating fear- and anxiety-like behavior in both humans and animals. ⋯ Psychoneuroendocrinology 34:833-843, 2009). We describe how interactions between PACAP and CRH in the BNST may mediate stress-associated behaviors, including anorexia and anxiety-like behavior. These studies have the potential to define specific mechanisms underlying anxiety disorders, and may provide important therapeutic strategies for stress and anxiety management.
-
The spinal cord (SC) is a biosynthetic center for neurosteroids, including pregnenolone (PREG), progesterone (PROG), and 3alpha/5alpha-tetrahydroprogesterone (3alpha/5alpha-THP). In particular, an active form of cytochrome P450 sidechain cleavage (P450scc) has been localized in sensory networks of the rat SC dorsal horn (DH). P450scc is the key enzyme catalyzing the conversion of cholesterol (CHOL) into PREG, the rate-limiting step in the biosynthesis of all classes of steroids. ⋯ Radioimmunoassays showed an increase of PREG and 3alpha/5alpha-THP concentrations in neuropathic rat DH. The upregulation of PREG and 3alpha/5alpha-THP biosynthesis might be involved in endogenous mechanisms triggered by neuropathic rats to cope with the chronic pain state. 3alpha/5alpha-THP formation from PREG can also generate PROG, which decreases sensitivity to pain and protects nerve cells against degeneration. Because apoptotic cell death has been demonstrated in the DH during neuropathic pain, activation of neurosteroidogenesis in spinal tissues might also be correlated to the neuroprotective role of steroids in the SC.