European journal of internal medicine
-
Eur. J. Intern. Med. · Jun 2020
ReviewAntisense lipoprotein[a] therapy: State-of-the-art and future perspectives.
Several lines of evidence now attest that lipoprotein[a] (Lp[a]) is a significant risk factor for many cardiovascular disorders. This enigmatic lipoprotein, composed of a single copy of apolipoprotein B (apoB) and apolipoprotein[a] (apo [a]), expresses peculiar metabolism, virtually independent from lifestyle interventions. Several therapeutic options have hence been proposed for lowering elevated Lp[a] values, with or without concomitant effect on low density lipoprotein (LDL) particles, mostly encompassing statins, ezetimibe, nicotinic acid, lipoprotein apheresis, and anti-PCSK9 monoclonal antibodies. ⋯ Preliminary evidence would suggest that apo[a] antisense therapy seems more appropriate in patients with isolated Lp[a] elevations, while apoB antisense therapy is perhaps more advisable in patients with isolated LDL elevations. In patients with concomitant elevations of Lp[a] and LDL, either combining the two apo[a] and apoB antisense therapies (a strategy which has never been tested), or the combination of well-known and relatively inexpensive drugs such as statins with antisense apo[a] inhibitors can be theoretically suggested. The results of an upcoming phase 3 study with antisense apo[a] inhibitors will hopefully provide definitive clues as to whether this approach may become the standard of care in patients with increased Lp[a] concentrations.
-
Eur. J. Intern. Med. · Jun 2020
ReviewThe pivotal link between ACE2 deficiency and SARS-CoV-2 infection.
Angiotensin converting enzyme-2 (ACE2) receptors mediate the entry into the cell of three strains of coronavirus: SARS-CoV, NL63 and SARS-CoV-2. ACE2 receptors are ubiquitous and widely expressed in the heart, vessels, gut, lung (particularly in type 2 pneumocytes and macrophages), kidney, testis and brain. ACE2 is mostly bound to cell membranes and only scarcely present in the circulation in a soluble form. ⋯ The additional ACE2 deficiency after viral invasion might amplify the dysregulation between the 'adverse' ACE→Angiotensin II→AT1 receptor axis and the 'protective' ACE2→Angiotensin1-7→Mas receptor axis. In the lungs, such dysregulation would favor the progression of inflammatory and thrombotic processes triggered by local angiotensin II hyperactivity unopposed by angiotensin1-7. In this setting, recombinant ACE2, angiotensin1-7 and angiotensin II type 1 receptor blockers could be promising therapeutic approaches in patients with SARS-CoV-2 infection.