Cytokine
-
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an abundant stroma containing several pro-inflammatory cytokines, which are described to modulate the expression of important genes related to tumor promotion and progression. In the present work we have investigated the potential role of these cytokines in the biosynthesis of tumor-associated carbohydrate antigens such as sialyl-Lewis(x) (SLe(x)) through the regulation of specific glycosyltransferase genes. ⋯ The inflammatory microenvironment can modulate the glycosylation pattern of PDAC cells, increasing the expression of tumor-associated sialylated antigens such as SLe(x), which contributes to pancreatic tumor malignancy.
-
Periodontitis is the most prevalent infectious disease caused by periodontopathic bacteria and is also a chronic inflammatory disease. Gingival crevicular fluid (GCF) is an inflammatory exudate that seeps into the gingival crevices or periodontal pockets around teeth with inflamed gingiva, and contains various materials including leukocytes and cytokines. Since gingival epithelial cells, which form a barrier against bacterial challenges, are affected by GCF, cytokines or other materials contained within GCF are engaged in the maintenance and disruption of the epithelial barrier. ⋯ However, the inhibition of Erk/Akt signaling pathways by U0126, a MEK-Erk inhibitor and LY294002, a PI3Kinase-Akt inhibitor, augmented TGF-β1-induced apoptosis in OBA9 cells. Taken together, the results of present study demonstrated that TGF-β1 activated both the smad2 and Erk/Akt cascades via its receptor on gingival epithelial cells, even though these two pathways have opposite roles in cell death and survival, and the culmination of these signaling events induced mitochondria-dependent apoptosis in gingival epithelial cells. Based on the results of the present study, we herein proposed for the first time, that TGF-β1 is a novel target cytokine for monitoring the progression of periodontal disease.