The Journal of nutritional biochemistry
-
To clarify the effects of natural dietary components on the metabolic consequences of obesity, we examined the effects of yerba mate extract Ilex paraguariensis on both central and peripheral inflammatory effects of diet-induced obesity and correlated the hypothalamic tumor necrosis factor (TNF)-α level with adipose depot weight. Wistar rats were divided into four groups: a control group (CTL) fed with chow diet, a second group fed with chow diet plus yerba mate extract (CTL+E), a third group fed with a high-fat diet rich in saturated fatty acids (HFD) and a fourth group fed with HFD plus yerba mate extract (HFD+E). Enzyme-linked immunosorbent assay, Western blotting, colorimetric method and treatment by gavage were utilized as materials and methods. ⋯ In addition, yerba mate extract intake blunted the proinflammatory effects of diet-induced obesity in rats by reducing the phosphorylation of hypothalamic IKK and NFκBp65 expression and increasing the phosphorylation of IκBα, the expression of adiponectin receptor-1 and consequently the amount of IRS-2. Moreover, the increase in interleukin (IL)-6 levels in the liver and muscle and of the IL-10/TNF-α ratio in groups that received yerba mate extract showed the anti-inflammatory effects of this natural substance. Taken together, our data suggest that the use of yerba mate extract may be useful for reducing low-grade obesity-associated inflammation.
-
Prenatal ethanol exposure (PNEE) causes long-lasting deficits in brain structure and function. In this study, we have examined the effect of PNEE on antioxidant capacity and oxidative stress in the adult brain with particular focus on four brain regions known to be affected by ethanol: cerebellum, prefrontal cortex and hippocampus (cornu ammonis and dentate gyrus subregions). We have utilized a liquid diet model of fetal alcohol spectrum disorders that is supplied to pregnant Sprague-Dawley rats throughout gestation. ⋯ These results indicate that PNEE induces long-lasting changes in the antioxidant capacity of the brain, and this can lead to a state of oxidative stress. Postnatal omega-3 supplementation was able to increase glutathione levels and reduce lipid peroxidation in PNEE animals, partially reversing the effects of alcohol exposure, particularly in the dentate gyrus and the cerebellum. This is the first study where omega-3 supplementation has been shown to have a beneficial effect in PNEE, reducing oxidative stress and enhancing antioxidant capacity.