Journal of dermatological science
-
trans-Cinnamaldehyde and trans-cinnamic alcohol cause allergic contact dermatitis (ACD) in humans; cinnamaldehyde is a more potent sensitiser than cinnamic alcohol. These two chemicals are principal constituents of the European Standard 'Fragrance Mix', as used in patch testing diagnostics of sensitisation to fragrances by clinical dermatologists. As contact sensitisers are usually protein reactive compounds, it is hypothesised that cinnamic alcohol (not protein-reactive) is a 'prohapten' that requires metabolic activation, presumably by cutaneous oxidoreductases, to the protein-reactive cinnamaldehyde (a 'hapten'). It is postulated that cinnamaldehyde can be detoxified by aldehyde dehydrogenase (ALDH) to cinnamic acid and/or by alcohol dehydrogenase (ADH) to cinnamic alcohol. Hence, a variety of metabolic pathways may contribute to the relative exposures and hence sensitising potencies of cinnamic alcohol and cinnamaldehyde. ⋯ This study has demonstrated that cutaneous ADH and ALDH activities, located within defined subcellular compartments, play important roles in the activation and detoxification of CAlc and CAld in skin. Such findings are important to the development of computational hazard prediction tools for sensitisation (e.g. the DEREK program) and also to dermatologists in understanding observed interindividual differences, cross-reactivities or co-sensitisation to different cinnamic compounds in the clinic.