Behavioural pharmacology
-
Behavioural pharmacology · Dec 2011
Behavioral and neurochemical effects of sodium butyrate in an animal model of mania.
The present study investigated the effect of the histone deacetylase inhibitor, sodium butyrate (SB), on locomotor behavior and on mitochondrial respiratory-chain complexes activity in the brain of rats subjected to an animal model of mania induced by d-amphetamine (d-AMPH). In the reversal treatment, Wistar rats were first treated with d-AMPH or saline (Sal) for 14 days. Thereafter, between days 8 and 14, rats were administered SB or Sal. ⋯ The d-AMPH treatment increased locomotor behavior in Sal-treated rats under reversion and prevention treatment, and SB reversed and prevented d-AMPH-related hyperactivity. Moreover, d-AMPH decreased the activity of mitochondrial respiratory-chain complexes in Sal-treated rats in the prefrontal cortex, hippocampus, striatum, and amygdala in both experiments, and SB was able to reverse and prevent this impairment. The present study suggests that the mechanism of action of SB involves induction of mitochondrial function in parallel with behavioral changes, reinforcing the need for more studies on histone deacetylase inhibitors as a possible target for new medications for bipolar disorder treatment.
-
Behavioural pharmacology · Dec 2011
Intrathecal lemnalol, a natural marine compound obtained from Formosan soft coral, attenuates nociceptive responses and the activity of spinal glial cells in neuropathic rats.
The investigators previously found that the administration of lemnalol, a natural marine compound isolated from the Formosan soft coral Lemnalia cervicorni, produced anti-inflammatory and analgesic effects in carrageenan-injected rats. Recently, several studies have demonstrated that the development and maintenance of neuropathic pain are accompanied by releasing of proinflammatory mediators from activated glial cells in the spinal cord. In this study, we investigated the antinociceptive properties of lemnalol, a potential anti-inflammatory compound, on chronic constriction injury (CCI) in a well-established rat model of neuropathic pain. ⋯ Furthermore, immunohistofluorescence analyses showed that lemnalol (10 μg) also significantly inhibits CCI-induced upregulation of microglial and astrocytic immunohistochemical activation markers in the dorsal horn of the lumbar spinal cord. Double immunofluorescent staining demonstrated that intrathecal injection of lemnalol (10 μg) markedly inhibited spinal proinflammatory mediator tumor necrosis factor-α expression in microglial cells and astrocytes in neuropathic rats. Collectively, our results indicate that lemnalol is a potential therapeutic agent for neuropathic pain, and that further exploration of the effects of lemnalol on glial proinflammatory responses is warranted.