Advances in pharmacology
-
γ-Aminobutyric acid type A receptors (GABAARs) are the principal mediators of fast synaptic inhibition in the brain as well as the low persistent extrasynaptic inhibition, both of which are fundamental to proper brain function. Thus unsurprisingly, deficits in GABAARs are implicated in a number of neurological disorders and diseases. The complexity of GABAAR regulation is determined not only by the heterogeneity of these receptors but also by its posttranslational modifications, the foremost, and best characterized of which is phosphorylation. ⋯ Here, we summarize the progress in understanding the role phosphorylation plays in the regulation of GABAARs. This includes how phosphorylation can affect the allosteric modulation of GABAARs, as well as signaling pathways that affect GABAAR phosphorylation. Finally, we discuss the dysregulation of GABAAR phosphorylation and its implication in disease processes.
-
Since their introduction in the 1960s, benzodiazepines (BZs) remain one of the most commonly prescribed medications, acting as potent sedatives, hypnotics, anxiolytics, anticonvulsants, and muscle relaxants. The primary neural action of BZs and related compounds is augmentation of inhibitory transmission, which occurs through allosteric modulation of the gamma-aminobutyric acid (GABA)-induced current at the gamma-aminobutyric acid receptor (GABAAR). The discovery of the BZ-binding site on GABAARs encouraged many to speculate that the brain produces its own endogenous ligands to this site (Costa & Guidotti, 1985). ⋯ Of these ligands, DBI, and affiliated peptide fragments, is the most extensively studied endozepine. The quest for the "brain's Valium" over the decades has been elusive as mainly negative allosteric modulatory effects have been observed (Alfonso, Le Magueresse, Zuccotti, Khodosevich, & Monyer, 2012; Costa & Guidotti, 1985), but recent evidence is accumulating that DBI displays regionally discrete endogenous positive modulation of GABA transmission through activation of the BZ receptor (Christian et al., 2013). Herein, we review the literature on this topic, focusing on identification of the endogenous molecule and its region-specific expression and function.
-
Advances in pharmacology · Jan 2015
ReviewClosing the gap between the molecular and systemic actions of anesthetic agents.
Genetic approaches have been successfully used to relate the diverse molecular actions of anesthetic agents to their amnestic, sedative, hypnotic, and immobilizing properties. The hypnotic effect of etomidate, quantified as the duration of the loss of righting reflex in mice, is equally mediated by GABAA receptors containing β2- and β3-protein subunits. However, only β3-containing receptors are involved in producing electroencephalogram (EEG)-patterns typical of general anesthesia. ⋯ Interestingly, this action is self-limiting as GABA-release is attenuated via the same receptors. Anesthetic-induced amnesia is in part mediated by GABAA receptors harboring α5-subunits that are highly enriched in the hippocampus and, in addition, by α1-containing receptors in the forebrain. Because there is accumulating evidence that in patients the expression pattern of GABAA receptor subtypes varies with age, is altered by the long-term use of drugs, and is affected by pathological conditions like inflammation and sepsis, further research is recommended to adapt the use of anesthetic agents to the specific requirements of individual patients.
-
Advances in pharmacology · Jan 2015
ReviewAllosteric modulation of GABAA receptors via multiple drug-binding sites.
GABAA receptors are ligand-gated ion channels composed of five subunits that can be opened by GABA and be modulated by multiple pharmacologically and clinically important drugs. Over the time, hundreds of compounds from different structural classes have been demonstrated to modulate, directly activate, or inhibit GABAA receptors, and most of these compounds interact with more than one binding site at these receptors. Crystal structures of proteins and receptors homologous to GABAA receptors as well as homology modeling studies have provided insights into the possible location of ligand interaction sites. ⋯ The existence of multiple GABAA receptor subtypes with distinct subunit composition, the contribution of distinct subunit sequences to binding sites of different receptor subtypes, as well as the observation that even subunits not directly contributing to a binding site are able to influence affinity and efficacy of drugs, contribute to a unique pharmacology of each GABAA receptor subtype. Thus, each receptor subtype has to be investigated to identify a possible subtype selectivity of a compound. Although multiple binding sites make GABAA receptor pharmacology even more complicated, the exploitation of ligand interaction with novel-binding sites also offers additional possibilities for a subtype-selective modulation of GABAA receptors.
-
Advances in pharmacology · Jan 2015
Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes.
GABAA receptors (GABA(A)Rs) mediate rapid inhibitory transmission in the brain. GABA(A)Rs are ligand-gated chloride ion channel proteins and exist in about a dozen or more heteropentameric subtypes exhibiting variable age and brain regional localization and thus participation in differing brain functions and diseases. GABA(A)Rs are also subject to modulation by several chemotypes of allosteric ligands that help define structure and function, including subtype definition. ⋯ In the transmembrane domain are allosteric modulatory ligand sites for diverse chemotypes of general anesthetics: the volatile and intravenous agents, barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are endogenous positive allosteric modulators. X-ray crystal structures of prokaryotic and invertebrate pentameric ligand-gated ion channels, and the mammalian GABA(A)R protein, allow homology modeling of GABA(A)R subtypes with the various ligand sites located to suggest the structure and function of these proteins and their pharmacological modulation.