Advances in pharmacology
-
Two decades have passed since the peptide, nociceptin/orphanin FQ (N/OFQ), and its cognate (NOP) receptor were discovered. Although NOP receptor activation causes a similar pattern of intracellular actions as mu-opioid (MOP) receptors, NOP receptor-mediated pain modulation in rodents are more complicated than MOP receptor activation. This review highlights the functional evidence of spinal, supraspinal, and systemic actions of NOP receptor agonists for regulating pain. ⋯ Depending upon their intrinsic efficacies for activating NOP and MOP receptors, bifunctional NOP/MOP receptor agonists warrant additional investigation in primates regarding their side effect profiles. Nevertheless, NOP receptor-related agonists display a much wider therapeutic window as compared to that of MOP receptor agonists in primates. Both selective NOP receptor agonists and bifunctional NOP/MOP receptor agonists hold great potential as effective and safe analgesics without typical opioid-associated side effects in humans.
-
Advances in pharmacology · Jan 2016
ReviewSodium Channels in Pain and Cancer: New Therapeutic Opportunities.
Voltage-gated sodium channels (VGSCs) underpin electrical activity in the nervous system through action potential propagation. First predicted by the modeling studies of Hodgkin and Huxley, they were subsequently identified at the molecular level by groups led by Catterall and Numa. VGSC dysfunction has long been linked to neuronal and cardiac disorders with some nonselective sodium channel blockers in current use in the clinic. ⋯ Four channels are potential targets for pain disorders. This conclusion comes from mouse knockout studies and human mutations that prove the involvement of Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in the development and maintenance of acute and chronic pain. In this chapter, we present a short overview of the possible role of Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in human pain and the emerging and unexpected role of sodium channels in cancer pathogenesis.
-
γ-Aminobutyric acid type A receptors (GABAARs) are the principal mediators of fast synaptic inhibition in the brain as well as the low persistent extrasynaptic inhibition, both of which are fundamental to proper brain function. Thus unsurprisingly, deficits in GABAARs are implicated in a number of neurological disorders and diseases. The complexity of GABAAR regulation is determined not only by the heterogeneity of these receptors but also by its posttranslational modifications, the foremost, and best characterized of which is phosphorylation. ⋯ Here, we summarize the progress in understanding the role phosphorylation plays in the regulation of GABAARs. This includes how phosphorylation can affect the allosteric modulation of GABAARs, as well as signaling pathways that affect GABAAR phosphorylation. Finally, we discuss the dysregulation of GABAAR phosphorylation and its implication in disease processes.
-
Since their introduction in the 1960s, benzodiazepines (BZs) remain one of the most commonly prescribed medications, acting as potent sedatives, hypnotics, anxiolytics, anticonvulsants, and muscle relaxants. The primary neural action of BZs and related compounds is augmentation of inhibitory transmission, which occurs through allosteric modulation of the gamma-aminobutyric acid (GABA)-induced current at the gamma-aminobutyric acid receptor (GABAAR). The discovery of the BZ-binding site on GABAARs encouraged many to speculate that the brain produces its own endogenous ligands to this site (Costa & Guidotti, 1985). ⋯ Of these ligands, DBI, and affiliated peptide fragments, is the most extensively studied endozepine. The quest for the "brain's Valium" over the decades has been elusive as mainly negative allosteric modulatory effects have been observed (Alfonso, Le Magueresse, Zuccotti, Khodosevich, & Monyer, 2012; Costa & Guidotti, 1985), but recent evidence is accumulating that DBI displays regionally discrete endogenous positive modulation of GABA transmission through activation of the BZ receptor (Christian et al., 2013). Herein, we review the literature on this topic, focusing on identification of the endogenous molecule and its region-specific expression and function.
-
Advances in pharmacology · Jan 2015
ReviewClosing the gap between the molecular and systemic actions of anesthetic agents.
Genetic approaches have been successfully used to relate the diverse molecular actions of anesthetic agents to their amnestic, sedative, hypnotic, and immobilizing properties. The hypnotic effect of etomidate, quantified as the duration of the loss of righting reflex in mice, is equally mediated by GABAA receptors containing β2- and β3-protein subunits. However, only β3-containing receptors are involved in producing electroencephalogram (EEG)-patterns typical of general anesthesia. ⋯ Interestingly, this action is self-limiting as GABA-release is attenuated via the same receptors. Anesthetic-induced amnesia is in part mediated by GABAA receptors harboring α5-subunits that are highly enriched in the hippocampus and, in addition, by α1-containing receptors in the forebrain. Because there is accumulating evidence that in patients the expression pattern of GABAA receptor subtypes varies with age, is altered by the long-term use of drugs, and is affected by pathological conditions like inflammation and sepsis, further research is recommended to adapt the use of anesthetic agents to the specific requirements of individual patients.