The Journal of steroid biochemistry and molecular biology
-
J. Steroid Biochem. Mol. Biol. · Apr 2021
DHEA inhibits proliferation, migration and alters mesenchymal-epithelial transition proteins through the PI3K/Akt pathway in MDA-MB-231 cells.
Cancer is one of the leading causes of death worldwide, and breast cancer is the most common among women. Dehydroepiandrosterone (DHEA), the most abundant steroid hormone in human serum, inhibits proliferation and migration of breast cancer cells, modulating the expression of proteins involved in mesenchymal-epithelial transition (MET). However, the underlying molecular mechanisms are not fully understood. ⋯ However, wortmannin and LY294002, inhibitors of the PI3K/Akt pathway, abolished the up- and down-regulation of E- and N-cadherin expression respectively, and inhibition of migration induced by DHEA in MDA-MB-231 cells. The siRNA that blocks the PI3K pathway, abolished the effects of DHEA on proliferation, migration, MET proteins expression and the growth of tumors in nude mice. In conclusion, these results suggest that PI3K/Akt pathway participates in the effects of DHEA on breast cancer cells.