Molecular and cellular neurosciences
-
Mol. Cell. Neurosci. · Oct 2004
Comparative StudyVersican V2 and the central inhibitory domain of Nogo-A inhibit neurite growth via p75NTR/NgR-independent pathways that converge at RhoA.
Myelin is a major obstacle for regenerating nerve fibers of the adult mammalian central nervous system (CNS). Several proteins including Nogo-A, myelin-associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp) and the chondroitin-sulfate proteoglycan (CSPG) Versican V2 have been identified as inhibitory components present in CNS myelin. MAG, OMgp as well as the Nogo specific domain Nogo-66 exert their inhibitory activity by binding to a neuronal receptor complex containing the Nogo-66 receptor NgR and the neurotrophin receptor p75(NTR). ⋯ Furthermore, modulation of RhoA and Rac1 in p75(NTR)-/- neurons persists with NiG and Versican V2. Finally, we demonstrate that neither NiG nor Versican V2 interact with the p75(NTR)/NgR receptor complex and provide evidence that the binding sites of NiG and Nogo-66 are physically distinct from each other on neural tissue. These results indicate not only the existence of neuronal receptors for myelin inhibitors independent from the p75(NTR)/NgR receptor complex but also establish Rho GTPases as a common point of signal convergence of diverse myelin-induced regeneration inhibitory pathways.