Molecular and cellular neurosciences
-
Mol. Cell. Neurosci. · Feb 2008
The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis.
Knowledge about the effects of physical exercise on brain is accumulating although the mechanisms through which exercise exerts these actions remain largely unknown. A possible involvement of adult hippocampal neurogenesis (AHN) in the effects of exercise is debated while the physiological and pathological significance of AHN is under intense scrutiny. Recently, both neurogenesis-dependent and independent mechanisms have been shown to mediate the effects of physical exercise on spatial learning and anxiety-like behaviors. ⋯ Normal mice, but not LID mice, showed reduced anxiety after exercise in this test. However, after exercise, LID mice did show improvement in the forced swim test, a measure of behavioral despair. Thus, many, but not all of the beneficial effects of exercise on brain function depend on circulating levels of IGF-I and are associated to increased hippocampal neurogenesis, including improved cognition and reduced anxiety.
-
Mol. Cell. Neurosci. · Feb 2008
Transcriptional and functional profiles of voltage-gated Na(+) channels in injured and non-injured DRG neurons in the SNI model of neuropathic pain.
Changes in expression and function of voltage-gated sodium channels (VGSC) in dorsal root ganglion (DRG) neurons may play a major role in the genesis of peripheral hyperexcitability that occurs in neuropathic pain. We present here the first description of changes induced by spared nerve injury (SNI) to Na(v)1 mRNA levels and tetrodotoxin-sensitive and -resistant (TTX-S/TTX-R) Na(+) currents in injured and adjacent non-injured small DRG neurons. ⋯ TTX-S current densities were not affected by SNI, while the rate of recovery from inactivation was accelerated in injured neurons. Our results describe altered neuronal electrogenesis following SNI that is likely induced by a complex regulation of VGSCs.