Molecular and cellular neurosciences
-
Mol. Cell. Neurosci. · May 2015
ReviewPost-traumatic neurodegeneration and chronic traumatic encephalopathy.
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity around the world. Concussive and subconcussive forms of closed-head injury due to impact or blast neurotrauma represent the most common types of TBI in civilian and military settings. It is becoming increasingly evident that TBI can lead to persistent, long-term debilitating effects, and in some cases, progressive neurodegeneration and chronic traumatic encephalopathy (CTE). ⋯ Although research on the long-term effects of TBI is advancing quickly, the incidence and prevalence of post-traumatic neurodegeneration and CTE are unknown. Critical knowledge gaps include elucidation of pathogenic mechanisms, identification of genetic risk factors, and clarification of relevant variables-including age at exposure to trauma, history of prior and subsequent head trauma, substance use, gender, stress, and comorbidities-all of which may contribute to risk profiles and the development of post-traumatic neurodegeneration and CTE. This article is part of a Special Issue entitled 'Traumatic Brain Injury'.
-
Mol. Cell. Neurosci. · May 2015
ReviewNeurological consequences of traumatic brain injuries in sports.
Traumatic brain injury (TBI) is common in boxing and other contact sports. The long term irreversible and progressive aftermath of TBI in boxers depicted as punch drunk syndrome was described almost a century ago and is now widely referred as chronic traumatic encephalopathy (CTE). The short term sequelae of acute brain injury including subdural haematoma and catastrophic brain injury may lead to death, whereas mild TBI, or concussion, causes functional disturbance and axonal injury rather than gross structural brain damage. ⋯ This article provides an overview of the acute and long-term neurological consequences of TBI in sports. Clinical, neuropathological and the possible pathophysiological mechanisms are discussed. This article is part of a Special Issue entitled 'Traumatic Brain Injury'.
-
Mol. Cell. Neurosci. · May 2015
ReviewEpidemiology of mild traumatic brain injury and neurodegenerative disease.
Every year an estimated 42 million people worldwide suffer a mild traumatic brain injury (MTBI) or concussion. More severe traumatic brain injury (TBI) is a well-established risk factor for a variety of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Recently, large epidemiological studies have additionally identified MTBI as a risk factor for dementia. ⋯ The prevalence of CTE is unknown and the amount of MTBI or sub-concussive trauma exposure necessary to produce CTE is unclear. This review will summarize the current literature regarding the epidemiology of MTBI, post-TBI dementia and Parkinson's disease, and CTE while highlighting methodological challenges and critical future directions of research in this field. This article is part of a Special Issue entitled SI:Traumatic Brain Injury.
-
Mol. Cell. Neurosci. · May 2015
ReviewNeuroimaging and traumatic brain injury: State of the field and voids in translational knowledge.
Traumatic brain injury (TBI) is a leading cause of death and disability in every developed country in the world and is believed to be a risk factor in the later development of depression, anxiety disorders and neurodegenerative diseases including chronic traumatic encephalopathy (CTE), Alzheimer's Disease (AD), Parkinson's Disease (PD), and amyotrophic lateral sclerosis (ALS). One challenge faced by those who conduct research into TBI is the lack of a verified and validated biomarker that can be used to diagnose TBI or for use as a prognostic variable which can identify those at risk for poor recovery following injury or at risk for neurodegeneration later in life. Neuroimaging continues to hold promise as a TBI biomarker but is limited by a lack of clear relationship between the neuropathology of injury/recovery and the quantitative and image based data that is obtained. ⋯ This review describes the current use and limitations of imaging in TBI including a discussion of currently used animal injury models and the available animal imaging data and extracted markers that hold the greatest promise for helping translate alterations in imaging back to injury pathology. Further, it reviews both the human and animal TBI literature supporting current standards, identifies the remaining voids in the literature, and briefly highlights recent advances in molecular imaging. This article is part of a Special Issue entitled 'Traumatic Brain Injury'.
-
Mol. Cell. Neurosci. · May 2015
ReviewThe pathophysiology of repetitive concussive traumatic brain injury in experimental models; new developments and open questions.
In recent years, there has been an increasing interest in the pathophysiology of repetitive concussive traumatic brain injury (rcTBI) in large part due to the association with dramatic cases of progressive neurological deterioration in professional athletes, military personnel, and others. However, our understanding of the pathophysiology of rcTBI is less advanced than for more severe brain injuries. Most prominently, the mechanisms underlying traumatic axonal injury, microglial activation, amyloid-beta accumulation, and progressive tau pathology are not yet known. ⋯ Furthermore, we propose a discrete set of open, experimentally tractable questions that may serve as a framework for future investigations. In addition, we also raise several important questions that are less experimentally tractable at this time, in hopes that they may stimulate future methodological developments to address them. This article is part of a Special Issue entitled "Traumatic Brain Injury".