Molecular and cellular neurosciences
-
Mol. Cell. Neurosci. · Dec 2005
Selective activation of G-protein coupled receptors by volatile anesthetics.
Ion channels and ionotropic neurotransmitter receptors have long been investigated as the principle targets of inhaled volatile anesthetics (VAs), but emerging evidence suggests that G-protein coupled receptors (GPCRs) might also directly interact with VAs. To survey the extent of interaction between VAs and diverse GPCRs, we have turned to the 1000+ member family of olfactory receptors (ORs), taking advantage of their unique expression pattern of a single OR per neuron. ⋯ Together with evidence of antagonism by odorants, this selective activation strongly implicates a direct action of VAs upon particular olfactory receptors. The finding that VAs stimulate nearly 8% of olfactory GPCRs suggests that probing related Class A GPCRs may reveal a pool of VA targets whose altered signaling contributes to anesthetic effects.
-
Mol. Cell. Neurosci. · Jul 2005
Global ischemia downregulates the function of metabotropic glutamate receptor subtype 5 in hippocampal CA1 pyramidal neurons.
Within the hippocampus, electrophysiological and immunohistochemical studies showed that metabotropic glutamate receptor subtype 5 (mGluR5) is the major postsynaptic mGluR expressed in CA1 pyramidal neurons. To better understand the role of mGluR5 in ischemia-induced neuronal death, whole-cell patch-clamp recordings using hippocampal slices were performed to investigate the functional change of mGluR5 in CA1 pyramidal neurons following transient global ischemia. ⋯ Further TaqMan real-time quantitative RT-PCR assay showed that mGluR5 mRNA expression in hippocampal CA1 region or single CA1 pyramidal neurons was significantly downregulated following ischemic insults. The present study suggests that transient global ischemia downregulates mGluR5 function of CA1 pyramidal neurons by decreasing mGluR5 mRNA and that the resulting reduced mGluR5-mediated excitotoxicity could contribute to the survival of CA1 pyramidal neurons after ischemic insult.
-
Mol. Cell. Neurosci. · Jun 2005
Differential actions of nerve growth factor receptors TrkA and p75NTR in a rat model of epileptogenesis.
Kindling, an experimental model of epileptogenesis, and activation-induced synaptic reorganization are modulated by nerve growth factor (NGF), but whether NGF acts via its high-affinity receptor TrkA and/or the common neurotrophin receptor p75NTR is unknown. We previously demonstrated, and confirmed in this study, that inhibition of NGF binding to both TrkA and p75NTR inhibited kindling and decreased kindling-induced mossy fiber sprouting. We now report specific inhibition of TrkA. ⋯ NGF antagonists. Our results suggest that TrkA, but not p75NTR, plays a role in kindling, while both receptors modulate kindling-induced mossy fiber sprouting. This implicates different mechanisms of neurotrophin action on kindling (mediated by TrkA) and neuronal sprouting (mediated by both TrkA and p75NTR) and suggests that sprouting involves kindling-independent neurotrophin action via p75NTR.
-
Mol. Cell. Neurosci. · Jan 2005
The role of proteoglycans in Schwann cell/astrocyte interactions and in regeneration failure at PNS/CNS interfaces.
In the dorsal root entry zone (DREZ) peripheral sensory axons fail to regenerate past the peripheral nervous system/central nervous system (PNS/CNS) interface. Additionally, in the spinal cord, central fibers that regenerate into Schwann cell (SC) bridges can enter but do not exit at the distal Schwann cell/astrocyte (AC) boundary. At both interfaces where limited mixing of the two cell types occurs, one can observe an up-regulation of inhibitory chondroitin sulfate proteoglycans (CSPGs). ⋯ Both techniques for reducing CSPGs allowed Schwann cells to penetrate deeply into the territory of the astrocytes. After adding sensory neurons to the assay, the axons showed different growth behaviors depending upon the glial cell type that they first encountered during regeneration. Our results help to explain why regeneration fails at PNS/CNS glial boundaries.
-
Mol. Cell. Neurosci. · Oct 2004
Comparative StudyVersican V2 and the central inhibitory domain of Nogo-A inhibit neurite growth via p75NTR/NgR-independent pathways that converge at RhoA.
Myelin is a major obstacle for regenerating nerve fibers of the adult mammalian central nervous system (CNS). Several proteins including Nogo-A, myelin-associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp) and the chondroitin-sulfate proteoglycan (CSPG) Versican V2 have been identified as inhibitory components present in CNS myelin. MAG, OMgp as well as the Nogo specific domain Nogo-66 exert their inhibitory activity by binding to a neuronal receptor complex containing the Nogo-66 receptor NgR and the neurotrophin receptor p75(NTR). ⋯ Furthermore, modulation of RhoA and Rac1 in p75(NTR)-/- neurons persists with NiG and Versican V2. Finally, we demonstrate that neither NiG nor Versican V2 interact with the p75(NTR)/NgR receptor complex and provide evidence that the binding sites of NiG and Nogo-66 are physically distinct from each other on neural tissue. These results indicate not only the existence of neuronal receptors for myelin inhibitors independent from the p75(NTR)/NgR receptor complex but also establish Rho GTPases as a common point of signal convergence of diverse myelin-induced regeneration inhibitory pathways.