Neuroreport
-
In an attempt to investigate the underlying mechanisms of cancer-induced bone pain, we investigated the presence of acid-sensing ion channel 3 (ASIC3) in dorsal root ganglia (DRG) neurons in an animal model of bone cancer pain. Forty-five female Sprague-Dawley rats were randomized into three groups: sham-operation group (sham), cancer-bearing animals killed after 7 days (C7), and cancer-bearing animals killed after 14 days (C14). After establishment of the bone cancer pain model, pain-related behavioral tests were performed to determine the paw withdrawal threshold of mechanical allodynia and thermal hyperalgesia, respectively. ⋯ Double-labeled immunofluorescence showed that ASIC3 and isolectin-B4 (IB4)-colocalized small DRG neurons in the C14 group were more than that in the sham group. Furthermore, we also found that there were more ASIC3 and neurofilament 200 (NF200)-colocalized DRG neurons in the C14 group than in the sham group. The upregulation of mRNA and protein levels of ASIC3 suggested its potential involvement in the development and maintenance of cancer-induced bone pain.