Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
A wide spectrum of pediatric corpus callosal diseases can occur in the pediatric age group. Cross-sectional magnetic resonance imaging plays an important role in the diagnosis of these patients. We reviewed our imaging record and collected cases of corpus callosal pathology. The purpose of this review is to illustrate the imaging features of various corpus callosal lesions encountered in children.
-
Aquaporin 4 (AQP-4) is the most abundant aquaporin isoform in the brain. Alterations in its expression and distribution have been correlated with the progression of several clinical disorders; however, the specific roles of AQP-4 in those disorders are not well understood. Visualizing AQP-4 in vivo is expected to provide fresh insights into its roles in disease pathology, as well as aiding the clinical assessment of those disorders. ⋯ Based on these initial results, we believe [11C]TGN-020 PET will be valuable in determining the role of AQP-4 in disease progression, and for the clinical assessment of water homeostasis under various settings.
-
As magnetic resonance-guided focused ultrasound (MRgFUS) sonothrombolysis relies on mechanical rather than thermal mechanisms to achieve clot lysis, thermometry is not useful for the intraoperative monitoring of clot breakdown by MRgFUS. Therefore, the purpose of this study was to evaluate the optimum imaging sequence for sonothrombolysis. ⋯ T2 is the most appropriate sequence for the evaluation of mechanical MRgFUS sonothrombolysis of an in vitro clot. These findings are consistent across the oxidative states of clot up to 48 hours.
-
Diagnosis of tibial neuropathy has been traditionally based on clinical examination and electrodiagnostic studies; however, cross-sectional imaging modalities have been used to increase the diagnostic accuracy and provide anatomic mapping of the abnormalities. In this context, magnetic resonance neurography (MRN) offers high-resolution imaging of the tibial nerve (TN), its branches and the adjacent soft tissues, and provides an objective assessment of the neuromuscular anatomy, abnormality, and the surrounding pathology. This review describes the pathologies affecting the TN and illustrates their respective 3 Tesla (T) MRN appearances with relevant case examples.
-
Fluid-attenuated inversion recovery imaging (FLAIR) has been suggested as a surrogate marker of lesion age in acute ischemic stroke. In a subgroup analysis, we evaluated whether the extent of perfusion deficit influences FLAIR lesion visibility and thus plays a role as a confounding variable in the interpretation of FLAIR images. ⋯ Visibility of FLAIR lesions in acute stroke imaging is influenced by lesion size and time from symptom onset to MRI, but not by the amount of perfusion deficit calculated by time-to-peak (TTP) measurements.