Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Cognitive impairment is a core symptom in multiple sclerosis (MS). Damage to normal appearing white matter (NAWM) is likely involved. We sought to determine if greater myelin heterogeneity in NAWM is associated with decreased cognitive performance in MS. ⋯ Increased myelin heterogeneity in NAWM is associated with decreased cognitive processing speed performance in MS.
-
Posterior fossa syndrome (PFS), characterized by loss of language and other neurological impairments within the immediate postoperative period, occurs in approximately 25% of children who undergo surgical resection of posterior fossa tumors. Diffusion tensor imaging connectomics offer promise for elucidation of pathway-level disruption in neural connectivity of patients with this disorder. We aim to determine differences in pre- and postoperative connectomics between children with PFS and children with mild or no language deficit after surgery. ⋯ Our findings revealed significant differences in preoperative neural connectivity involving the corticothalamic and other pathways among children who did, versus who did not, develop PFS postoperatively. Diffusion tensor imaging connectomics offers a unique opportunity to study the effect of the posterior fossa tumors on cerebello-cerebral networks and provide new insights into the mechanism of the structural plasticity/reorganization after surgery.
-
Neuroimaging plays a critical role in the management of patients with gliomas. While conventional magnetic resonance imaging (MRI) remains the standard imaging modality, it is frequently insufficient to inform clinical decision-making. There is a need for noninvasive strategies for reliably distinguishing low-grade from high-grade gliomas, identifying important molecular features of glioma, choosing an appropriate target for biopsy, delineating target area for surgery or radiosurgery, and distinguishing tumor progression (TP) from pseudoprogression (PsP). ⋯ Positron emission tomography is useful for measuring tumor metabolism, which correlates with grade and can distinguish TP/PsP in the right setting. Magnetic resonance spectroscopy can identify tissue by its chemical composition, can distinguish TP/PsP, and can identify molecular features like 2-hydroxyglutarate. Finally, amide proton transfer imaging measures intracellular protein content, which can be used to identify tumor grade/progression and distinguish TP/PsP.
-
Brain MRI-derived lesions and atrophy are related to multiple sclerosis (MS) disability. In the Serially Unified Multicenter MS Investigation (SUMMIT), from Brigham and Women's Hospital (BWH) and University of California, San Francisco (UCSF), we assessed whether MRI methodologic heterogeneity may limit the ability to pool multisite data sets to assess 5-year clinical-MRI associations. ⋯ MRI acquisition and processing differences may result in some degree of heterogeneity in assessing brain lesion and atrophy measures in patients with MS. Pooling of data across sites is beneficial to correct for potential biases in individual data sets.
-
Cerebral vasospasm in the setting of subarachnoid hemorrhage causes morbidity and mortality due to delayed cerebral ischemia and permanent neurological deficits. Vasospasm treatment includes intra-arterial injection of a spasmolytic during cerebral angiography. To evaluate effectiveness, neurointerventionalists subjectively examine a posttreatment cerebral angiogram to determine change in vessel diameter or increase in microvascular perfusion. Flat-detector computed tomography (FDCT) scanner has the ability to quantitatively measure cerebral blood volume (CBV) within the parenchyma and detect a quantitative change following treatment. ⋯ In conclusion, FDCT could measure the effectiveness of a change in CBV from infusion of verapamil in the setting of cerebral vasospasm. The authors believe quantifying the change allows for reassurance of improvement of cerebral vasospasm.