Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Review
Functional magnetic resonance imaging, deep learning, and Alzheimer's disease: A systematic review.
Alzheimer's disease (AD) is currently diagnosed using a mixture of psychological tests and clinical observations. However, these diagnoses are not perfect, and additional diagnostic tools (e.g., MRI) can help improve our understanding of AD as well as our ability to detect the disease. Accordingly, a large amount of research has been invested into innovative diagnostic methods for AD. ⋯ In turn, we outline the common deep neural network, preprocessing, and classification methods used in the literature. We also discuss the accuracy, strengths, limitations, and future direction of fMRI deep learning methods. In turn, we aim to summarize the current field for new researchers, suggest specific areas for future research, and highlight the potential of fMRI to aid AD diagnoses.
-
Review
Functional magnetic resonance imaging, deep learning, and Alzheimer's disease: A systematic review.
Alzheimer's disease (AD) is currently diagnosed using a mixture of psychological tests and clinical observations. However, these diagnoses are not perfect, and additional diagnostic tools (e.g., MRI) can help improve our understanding of AD as well as our ability to detect the disease. Accordingly, a large amount of research has been invested into innovative diagnostic methods for AD. ⋯ In turn, we outline the common deep neural network, preprocessing, and classification methods used in the literature. We also discuss the accuracy, strengths, limitations, and future direction of fMRI deep learning methods. In turn, we aim to summarize the current field for new researchers, suggest specific areas for future research, and highlight the potential of fMRI to aid AD diagnoses.
-
Autoimmune encephalitis is a category of autoantibody-mediated neurological disorders that often presents a diagnostic challenge due to its variable clinical and imaging findings. The purpose of this image-based review is to provide an overview of the major subtypes of autoimmune encephalitis and their associated autoantibodies, discuss their characteristic clinical and imaging features, and highlight several disease processes that may mimic imaging findings of autoimmune encephalitis. A literature search on autoimmune encephalitis was performed and publications from neuroradiology, neurology, and nuclear medicine literature were included. Cases from our institutional database that best exemplify major imaging features were presented.
-
Möbius sequence (MBS) previously known as Möbius syndrome is a rare nonprogressive developmental defect of the rhombencephalon leading to congenital abducens (VIth) and facial (VIIth) nerve palsy. Echoencephalography is the first, safe, noninvasive, and cost-effective imaging modality available at bedside. No study on the use of echoencephalography in neonates for the diagnosis of MBS has been previously reported. ⋯ Knowledge of echoencephalographic features of MBS should improve its early recognition. A detailed description of the various imaging phenotypes of MBS is necessary to characterize the etiology of this heterogeneous congenital cranial dysinnervation disorder.
-
Stroke mimics constitute a significant proportion of patients with suspected acute ischemic stroke. These conditions may resemble acute ischemic stroke and demonstrate abnormalities on perfusion imaging sequences. The most common stroke mimics include seizure/epilepsy, migraine with aura, brain tumors, functional disorders, infectious encephalopathies, Wernicke's encephalopathy, and metabolic abnormalities. ⋯ In this review, we describe patterns of perfusion abnormalities that could discriminate patients with stroke mimics from those with acute ischemic stroke and provide specific case examples to illustrate these perfusion abnormalities. In addition, we discuss the challenges associated with interpretation of perfusion images in stroke-related pathologies. In general, perfusion imaging can provide additional information in some cases-when used in combination with conventional magnetic resonance imaging and computed tomography-and might help in detecting stroke mimics among patients who present with acute onset focal neurological symptoms.