Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Review Meta Analysis
Brain magnetic resonance spectroscopy to differentiate recurrent neoplasm from radiation necrosis: A systematic review and meta-analysis.
Postradiation treatment necrosis is one of the most serious late sequelae and appears within 6 months. The magnetic resonance spectroscopy imaging (MRSI) has been used for the detection of brain tumors. The study aimed to determine the radiological accuracy and efficacy in distinguishing recurrent brain tumor from radiation-induced necrosis by identifying pseudoprogression. ⋯ MR spectroscopy is effective in distinguishing recurrent brain tumors from necrosis. Our meta-analysis revealed that Cho/NAA, Cho/Cr, and NAA/Cr ratios were significantly better predictor of detected recurrent tumor. Therefore, the MRSI is an informative tool in the distinction of tumor recurrence versus necrosis.
-
Conventional MRI measures of multiple sclerosis (MS) disease severity, such as lesion volume and brain atrophy, do not provide information about microstructural tissue changes, which may be driving physical and cognitive progression. Myelin damage in normal-appearing white matter (NAWM) is likely an important contributor to MS disability. Myelin water fraction (MWF) provides quantitative measurements of myelin. Mean MWF reflects average myelin content, while MWF standard deviation (SD) describes variation in myelin within regions. The myelin heterogeneity index (MHI = SD/mean MWF) is a composite metric of myelin content and myelin variability. We investigated how mean MWF, SD, and MHI compare in differentiating MS from controls and their associations with physical and cognitive disability. ⋯ Mean MWF, SD, and MHI provide complementary information when assessing regional and global NAWM abnormalities in MS and associations with clinical outcome measures. Examining all three metrics (mean MWF, SD, and MHI) enables a more detailed interpretation of results, depending on whether regions of interest include areas that are more heterogeneous, earlier in the demyelination process, or uniformly injured.
-
Cavernous malformations (CMs) are benign vascular malformations that maybe seen anywhere in the central nervous system. They are dynamic lesions, growing or shrinking over time and only rarely remaining stable. Size varies from a few millimeters to a few centimeters. ⋯ Our purpose is to review the imaging features of CMs based on their size, location, and etiology, as well as their differential diagnosis and best imaging approach. New insights in etiology will be briefly considered. Follow-up strategies, including serum and imaging biomarkers, and treatment options will also be discussed.
-
The diagnosis of Dementia with Lewy Bodies (DLB) is challenging due to various clinical presentations and clinical and neuropathological features that overlap with Alzheimer's disease (AD). The use of 18 F-Fluorodeoxyglucose-PET (18 F-FDG-PET) can be limited due to similar patterns in DLB and AD. However, metabolism in the posterior cingulate cortex is known to be relatively preserved in DLB and visual assessment of the "cingulate island sign" became a helpful tool in the analysis of 18F-FDG-PET. The aim of this study was the evaluation of visual and semiquantitative 18F-FDG-PET analyses in the diagnosis of DLB and the differentiation to AD as well as its relation to other dementia biomarkers. ⋯ Semiquantitative 18F-FDG-PET imaging and especially the use of an optimized cingulate island ratio are valuable tools to differentiate between DLB and AD.
-
The purpose was to explore the effects of transcutaneous trigeminal nerve stimulation (TNS) on neurochemical concentrations (brainstem, anterior cingulate cortex [ACC], dorsolateral prefrontal cortex [DLPFC], ventromedial prefrontal cortex [VMPFC], and the posterior cingulate cortex [PCC]) using ultrahigh-field magnetic resonance spectroscopy. ⋯ These data demonstrate that a single session of unilateral TNS slightly decreased tCr concentrations in the DLPFC region.