Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Perivascular spaces (PVSs), also known as Virchow-Robin spaces, are pial-lined, fluid-filled structures found in characteristic locations throughout the brain. They can become abnormally enlarged or dilated and in rare cases can cause hydrocephalus. ⋯ In addition, various pathologic processes, including cryptococcosis and chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids, can spread into the brain via PVSs, resulting in characteristic magnetic resonance imaging appearances. This review aims to describe the key imaging characteristics of normal and dilated PVSs, as well as cystic mimics and pathologic processes that directly involve PVSs.
-
Fluid-attenuated inversion recovery (FLAIR) imaging at 3 Tesla (T) field strength is the most sensitive modality for detecting white matter lesions in multiple sclerosis. While 7T FLAIR is effective in detecting cortical lesions, it has not been fully optimized for visualization of white matter lesions and thus has not been used for delineating lesions in quantitative magnetic resonance imaging (MRI) studies of the normal appearing white matter in multiple sclerosis. Therefore, we aimed to evaluate the sensitivity of 7T magnetization-transfer-weighted (MTw ) images in the detection of white matter lesions compared with 3T-FLAIR. ⋯ Seven-Tesla MTw sequences detected most of the white matter lesions identified by FLAIR at 3T. This suggests that 7T-MTw imaging is a robust alternative for detecting demyelinating lesions in addition to 3T-FLAIR. Future studies need to compare the roles of optimized 7T-FLAIR and of 7T-MTw imaging.
-
To determine the sensitivity and specificity of the hyperdense artery sign (HAS) on thin-slice non-contrast computed tomography (NCCT), combined with brief clinical history, as an indicator for large vessel occlusion (LVO) in the setting of acute ischemic stroke. ⋯ The HAS on thin-slice NCCT has a reasonably high sensitivity and specificity for identifying LVO in acute ischemic stroke patients presenting with an NIHSS > 10 and suspected MCA M1 or basilar artery occlusion.
-
Recent technical advances in neurosonography continue broadening the diagnostic utility, sensitivity, and specificity of ultrasound for detecting intracranial abnormalities bed side. The clinical and functional applications of neurosonography have significantly expanded since the 1980s when transcranial Doppler sonography first allowed anatomic and hemodynamic delineation of the intracranial vessels through the thin temporal skull. ⋯ It is essential that future neurosonography studies compare these advanced techniques against the current "gold standard" computed tomography and magnetic resonance imaging to assure the accuracy of their diagnostic potential. This review will provide a comprehensive update on currently available advanced neurosonography techniques.
-
The corpus callosum (CC) has an important role in regulating interhemispheric transfer and is thought to be instrumental in contralateral brain reorganization in patients with brain tumors, as suggested by a previous study reporting callosal differences between language dominance groups through diffusion tensor imaging (DTI) characteristics. The purpose of this study was to explore the structural differences in the CC between high-grade gliomas (HGGs) and metastatic tumors (METs) using the DTI characteristics of fractional anisotropy (FA), mean diffusivity (MD), and axial diffusivity (AD). ⋯ These results suggest that there is more contralateral brain reorganization in HGG patients than MET patients and that neither the tumor nor callosal volume impact the degree of contralateral brain reorganization.