Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Multicenter Study
Carotid plaque surface echogenicity predicts cerebrovascular events: An Echographic Multicentric Swiss Study.
To determine the prognostic value for ischemic stroke or transitory ischemic attack (TIA) of plaque surface echogenicity alone or combined to degree of stenosis in a Swiss multicenter cohort METHODS: Patients with ≥60% asymptomatic or ≥50% symptomatic carotid stenosis were included. Grey-scale based colour mapping was obtained of the whole plaque and of its surface defined as the regions between the lumen and respectively 0-0.5, 0-1, 0-1.5, and 0-2 mm of the outer border of the plaque. Red, yellow and green colour represented low, intermediate or high echogenicity. Proportion of red color on surface (PRCS) reflecting low echogenictiy was considered alone or combined to degree of stenosis (Risk index, RI). ⋯ In this pilot study including patients with at least moderate degree of carotid stenosis, PRCS (0-0.5mm) alone or combined to degree of stenosis strongly predicted occurrence of subsequent cerebrovascular events.
-
Subtle cognitive decline represents a stage of cognitive deterioration in which pathological biomarkers may be present, including early cortical atrophy and amyloid deposition. Using individual items from the Montreal Cognitive Assessment and k-modes cluster analysis, we previously identified three clusters of individuals without overt cognitive impairment: (1) High Performing (no deficits in performance), (2) Memory Deficits (lower memory performance), and (3) Compound Deficits (lower memory and executive function performance). In this study, we sought to understand the relationships found in our clusters between cortical atrophy on MR and amyloid burden on PET. ⋯ The Compound Deficits cluster, which represents a group potentially at higher risk for decline, was observed to have significantly more cortical atrophy, particularly within the entorhinal cortex and hippocampus, associated with whole brain and frontal lobe amyloid burden. These findings point to a pattern of early pathological deterioration that may place these individuals at risk for future decline.
-
Task-based functional MRI (fMRI) mapping of the motor function prior to epilepsy surgery has limitations in children with epilepsy. We present a data-driven method to automatically delineate the motor cortex using task-free, resting-state fMRI (rsfMRI) data. ⋯ Our results show the sensitivity and reproducibility of an automated motor mapping method based on ICA analysis of rsfMRI in children with epilepsy. The ICA maps may provide different, but useful, information than task fMRI. Future studies will expand our method to mapping other brain functions, and may lead to a surgical planning tool for patients who cannot perform task fMRI and help predict their postsurgical function.
-
Pediatric-onset multiple sclerosis (POMS) shows earlier axonal involvement and greater axonal loss than in adults. We aim to characterize the white matter (WM) microstructural changes in POMS using a diffusion compartment imaging (DCI) model and compare it to standard diffusion tensor imaging (DTI). ⋯ Lesions in POMS can be accurately characterized by a DCI model. Incipient changes in NAWM seen in DCI may not be readily observable by DTI.
-
Treatment of acute ischemic stroke is heavily contingent upon time, as there is a strong relationship between time clock and tissue progression. Work has established imaging biomarker assessments as surrogates for time since stroke (TSS), namely, by comparing signal mismatch between diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) imaging. Our goal was to develop an automatic technique for determining TSS from imaging that does not require subspecialist radiology expertise. ⋯ Our model achieved higher generalization performance on external evaluation datasets than the current state-of-the-art for TSS classification. These results demonstrate the potential of automatic assessment of onset time from imaging without the need for expertly trained radiologists.