Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Pediatric-onset multiple sclerosis (POMS) shows earlier axonal involvement and greater axonal loss than in adults. We aim to characterize the white matter (WM) microstructural changes in POMS using a diffusion compartment imaging (DCI) model and compare it to standard diffusion tensor imaging (DTI). ⋯ Lesions in POMS can be accurately characterized by a DCI model. Incipient changes in NAWM seen in DCI may not be readily observable by DTI.
-
Treatment of acute ischemic stroke is heavily contingent upon time, as there is a strong relationship between time clock and tissue progression. Work has established imaging biomarker assessments as surrogates for time since stroke (TSS), namely, by comparing signal mismatch between diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) imaging. Our goal was to develop an automatic technique for determining TSS from imaging that does not require subspecialist radiology expertise. ⋯ Our model achieved higher generalization performance on external evaluation datasets than the current state-of-the-art for TSS classification. These results demonstrate the potential of automatic assessment of onset time from imaging without the need for expertly trained radiologists.
-
Traumatic brain injury (TBI) can lead to movement and balance deficits. In addition to physical therapy, brain-based neurorehabilitation efforts have begun to show promise in improving these deficits. The present study investigated the effectiveness of translingual neural stimulation (TLNS) on patients with mild-to-moderate TBI (mmTBI) and related brain connectivity using a resting-state functional connectivity (RSFC) approach. ⋯ Although the limited sample size may have led to lack of significant correlations with functional assessments, these results provide preliminary evidence that TLNS in conjunction with physical therapy can induce brain plasticity in TBI patients with balance and movement deficits.
-
Sodium imaging shows great potential for the characterization of brain tumors. Intensity correction is required but the additional scan time is costly. Recent developments can halve the time but were optimized in normal brains and may not be applicable in brain tumor imaging. We aim to develop an individualized uniformity correction for sodium imaging optimized for brain tumor patients that reduces scan time but provides high-resolution images for clinical practice. ⋯ The 4 mm birdcage coil image provided the optimal approach for both as a compromise between the time-savings effect and image quality. This method allows for a 2-mm iso-cubic voxel resolution clinical sodium scan within 12 minutes. We also presented prescanned phantom sensitivity map results, which were designed to cover all patient head sizes. This approach provides an alternative solution in more time-sensitive cases.
-
Differentiating schwannomas and metastases in the cerebellopontine angles (CPA)/internal auditory canals (IAC) can be challenging. This study aimed to assess the role of diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE-MRI) to differentiate schwannomas and metastases in the CPA/IAC. ⋯ DWI and DCE-MRI can help differentiate CPA/IAC schwannomas and metastases, and Vp is the most significant parameter.