Journal of magnetic resonance imaging : JMRI
-
J Magn Reson Imaging · Dec 2005
Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options.
Cerebral perfusion imaging using dynamic susceptibility contrast (DSC) has been the subject of considerable research and shows promise for basic science and clinical use. In DSC, the MRI signals in brain tissue and feeding arteries are monitored dynamically in response to a bolus injection of paramagnetic agents, such as gadolinium (Gd) chelates. DSC has the potential to allow quantitative imaging of parameters such as cerebral blood flow (CBF) with a high signal-to-noise ratio (SNR) in a short scan time; however, quantitation depends critically on accurate and precise measurement of the arterial input function (AIF). ⋯ AIF measurements can also be affected by signal saturation and aliasing, as well as dispersion/delay between the AIF sampling site and the tissue. We present new in vivo preliminary results for magnitude-based (DeltaR2*) and phase-based (Deltaphi) AIF measurements that show a linearity advantage of phase, and a disparity in the scaling of Deltaphi AIFs, DeltaR2* AIFs, and DeltaR2* tissue curves. Finally, we discuss issues related to the choice of AIF signal for quantitative perfusion imaging.
-
J Magn Reson Imaging · Dec 2005
Comparative StudyArterial spin labeling: validity testing and comparison studies.
Arterial spin labeling (ASL) is a potential means of obtaining quantitative images of cerebral blood flow (CBF). However, few validation studies of ASL have been performed in animal models using gold-standard CBF methods. Other methods that use radiolabeled water as a tracer underestimate CBF in high flow states, but this effect has not been evident in ASL studies. ⋯ Validation studies using quantitative autoradiography (QAR) to image flow in a rat model of unilateral cerebral ischemia showed that ASL systematically overestimated CBF by 34%. A similar overestimation was also predicted by modeling. These results indicate that ASL signals are linear with respect to flow (even high flow), but ASL-CBF measurements are systematically overestimated.
-
J Magn Reson Imaging · Dec 2005
Comparative StudySTIR vs. T1-weighted fat-suppressed gadolinium-enhanced MRI of bone marrow edema of the knee: computer-assisted quantitative comparison and influence of injected contrast media volume and acquisition parameters.
To compare short tau inversion recovery (STIR) and T1-weighted (T1w) gadolinium (Gd)-enhanced fat-suppressed MRI of bone marrow edema (BME) of the knee, and investigate the influence of injected contrast media volume and variation of major acquisition parameters on apparent BME volume and signal contrast. ⋯ STIR is the optimum method for determining the size and signal contrast of BME. The injected contrast media volume appears to have only a limited influence on apparent BME volume.
-
J Magn Reson Imaging · Dec 2005
Quantifying CBF with pulsed ASL: technical and pulse sequence factors.
We summarize here current methods for the quantification of CBF using pulsed arterial spin labeling (ASL) methods. Several technical issues related to CBF quantitation are described briefly, including transit delay, signal from larger arteries, radio frequency (RF) slice profiles, magnetization transfer, tagging efficiency, and tagging geometry. ⋯ Velocity-selective ASL (VS-ASL) uses a new type of pulse labeling in which inflowing arterial spins are tagged based on their velocity rather than their spatial location. In principle, this technique may allow ASL measurement of cerebral blood flow (CBF) that is insensitive to transit delays.
-
The basic principles of measuring cerebral blood flow (CBF) using arterial spin labeling (ASL) are reviewed. The measurement is modeled by treating the ASL method as a magnetic resonance imaging (MRI) version of a microsphere study, rather than a diffusible tracer study. This approach, particularly when applied to pulsed ASL (PASL) experiments, clarifies that absolute calibration of CBF primarily depends on global properties of blood, rather than local tissue properties such as the water partition coefficient or relaxation time. ⋯ The key to quantitative CBF measurements that compensate for this systematic error is to create a well-defined bolus of tagged blood and to ensure that all of the bolus has been delivered to an imaging voxel at the time of measurement. Two practical technical factors considered here are 1) producing a tagged bolus with a well-defined temporal width and 2) accounting for reduction in magnitude of the tagged magnetization due to relaxation. The ASL approach has the potential to provide a robust estimation of CBF, although the timing of water exchange into tissue and the effects of pulsatile flow require further investigation.