Journal of magnetic resonance imaging : JMRI
-
High-field MRI at 3.0T is rapidly gaining clinical acceptance and experiencing more widespread use. The superiority of high-field imaging has clearly been demonstrated for neurological imaging. The impact of 3.0T imaging of the musculoskeletal system has been less dramatic due to complex optimization issues. ⋯ We additionally present some of the clinical issues we have experienced at 3.0T. A decision must be made as to whether to trade higher resolution for reduced scanning time. In general, we believe that routine imaging at 3.0T increases diagnostic confidence, especially for evaluations of cartilaginous and ligamentous structures.
-
High-field (3T) and ultra-high-field (UHF, 7T and above) systems are increasingly being used to explore potential musculoskeletal applications because they provide a high intrinsic signal-to-noise ratio (SNR), potentially higher resolution (spatial and temporal), and improved contrast. However, imaging at 7T and above presents certain challenges, such as homogeneous radiofrequency (RF) coil design, increased chemical shift artifacts, susceptibility artifacts, RF energy deposition, and changes in relaxation times compared to more typical clinical scanners (1.5 and 3T). Despite these issues, MRI at 7T likely will provide some excellent opportunities for high-resolution morphologic imaging and forays into functional imaging of musculoskeletal systems. In this review we address some of these issues and also demonstrate the feasibility of acquiring high-resolution in vivo images of the musculoskeletal system in healthy human volunteers at 7.0T.