Current biology : CB
-
Current biology : CB · Jan 2021
Activation of Preoptic Tachykinin 1 Neurons Promotes Wakefulness over Sleep and Volatile Anesthetic-Induced Unconsciousness.
Endogenous sleep and general anesthesia are distinct states that share similar traits. Of particular interest to neuroscience is the loss of consciousness that accompanies both states. Multiple lines of evidence demonstrate that general anesthetics can co-opt the neural circuits regulating arousal to produce unconsciousness. ⋯ Tac1-activated mice display a partial resistance to entering isoflurane anesthesia and a more pronounced ability to exit both isoflurane- and sevoflurane-induced unconscious states. We conclude that POA Tac1 neurons can potently reinforce arousal both against endogenous and drug-induced unconscious states. POA Tac1 neurons thus add causal support for the involvement of arousal-regulating systems in the state of general anesthesia.
-
Current biology : CB · Aug 2020
Circadian Regulation of Light-Evoked Attraction and Avoidance Behaviors in Daytime- versus Nighttime-Biting Mosquitoes.
Mosquitoes pose widespread threats to humans and other animals as disease vectors [1]. Day- versus night-biting mosquitoes occupy distinct time-of-day niches [2, 3]. Here, we explore day- versus night-biting female and male mosquitoes' innate temporal attraction/avoidance behavioral responses to light and their regulation by circadian circuit and molecular mechanisms. ⋯ Observed differences at the neural circuit and protein levels provide insight into the fundamental basis underlying diurnality versus nocturnality. Molecular disruption of the circadian clock severely interferes with light-evoked attraction/avoidance behaviors in mosquitoes. In summary, attraction/avoidance behaviors show marked differences between day- versus night-biting mosquitoes, but both classes of mosquitoes are circadian and light regulated, which may be applied toward species-specific control of harmful mosquitoes.
-
Current biology : CB · Jul 2020
LetterSleep in university students prior to and during COVID-19 Stay-at-Home orders.
Sleep health has multiple dimensions including duration, regularity, timing, and quality [1-4]. The Coronavirus 2019 (COVID-19) outbreak led to Stay-at-Home orders and Social Distancing Requirements in countries throughout the world to limit the spread of COVID-19. We investigated sleep behaviors prior to and during Stay-at-Home orders in 139 university students (aged 22.2 ± 1.7 years old [±SD]) while respectively taking the same classes in-person and remotely. ⋯ Further, we find individual differences in the change of TIB devoted to sleep such that students with shorter TIB at baseline before the first COVID-19 cases emerged locally had larger increases in weekday and weekend TIB during Stay-at-Home. The percentage of participants that reported 7 h or more sleep per night, the minimum recommended sleep duration for adults to maintain health [5] - including immune health - increased from 84% to 92% for weekdays during Stay-at-Home versus baseline. Understanding the factors underlying such changes in sleep health behaviors could help inform public health recommendations with the goal of improving sleep health during and following the Stay-at-Home orders of the COVID-19 pandemic.
-
Current biology : CB · May 2020
Learning New Feedforward Motor Commands Based on Feedback Responses.
Learning a new motor task modifies feedforward (i.e., voluntary) motor commands and such learning also changes the sensitivity of feedback responses (i.e., reflexes) to mechanical perturbations [1-9]. For example, after people learn to generate straight reaching movements in the presence of an external force field or learn to reduce shoulder muscle activity when generating pure elbow movements with shoulder fixation, evoked stretch reflex responses to mechanical perturbations reflect the learning expressed during self-initiated reaching. Such a transfer from feedforward motor commands to feedback responses is thought to take place because of shared neural circuits at the level of the spinal cord, brainstem, and cerebral cortex [10-13]. ⋯ Little is known about such a transfer presumably because it is relatively hard to elicit learning in reflexes without engaging associated voluntary responses following mechanical perturbations. Here, we demonstrate such transfer by leveraging two approaches to elicit stretch reflexes while minimizing engagement of voluntary motor responses in the learning process: applying very short mechanical perturbations [14-19] and instructing participants to not respond to them [20-26]. Taken together, our work shows that transfer between feedforward and feedback control is bidirectional, furthering the notion that these processes share common neural circuits that underlie motor learning and transfer.
-
Current biology : CB · Apr 2020
Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak.
An outbreak of coronavirus disease 2019 (COVID-19) caused by the 2019 novel coronavirus (SARS-CoV-2) began in the city of Wuhan in China and has widely spread worldwide. Currently, it is vital to explore potential intermediate hosts of SARS-CoV-2 to control COVID-19 spread. Therefore, we reinvestigated published data from pangolin lung samples from which SARS-CoV-like CoVs were detected by Liu et al. [1]. ⋯ Five key amino acid residues involved in the interaction with human ACE2 are completely consistent between Pangolin-CoV and SARS-CoV-2, but four amino acid mutations are present in RaTG13. Both Pangolin-CoV and RaTG13 lost the putative furin recognition sequence motif at S1/S2 cleavage site that can be observed in the SARS-CoV-2. Conclusively, this study suggests that pangolin species are a natural reservoir of SARS-CoV-2-like CoVs.