Hippocampus
-
The pre- and postsynaptic effects of baclofen, a broad-spectrum gamma-aminobutyric acid (GABA)B receptor agonist, and gabapentin, a selective agonist at GABA(B) receptors composed of GABA(B)(1a,2) heterodimers, were examined in CA1 pyramidal cells using whole-cell patch-clamp recordings in hippocampal slices from different strains of mice. In slices from C57BL/6 mice, by means of GABA(B) receptors, gabapentin and baclofen activated outward K+ currents at resting membrane potential. In weaver mice with a Kir3.2 channel mutation, baclofen and gabapentin failed to activate postsynaptic K+ currents. ⋯ Via presynaptic GABA(B) receptors, baclofen significantly reduced GABA(A) inhibitory postsynaptic currents (IPSCs) in slices from C57BL/6 mice, as well as weaver and control mice. In contrast, gabapentin did not affect IPSCs significantly in any group of mice. These results indicate that although baclofen and gabapentin are agonists at postsynaptic GABA(B) receptors positively coupled to K+ channels, their mechanism of action differs in certain strains of mice, including the weaver wild-type mice, suggesting a dissociation in their signaling mechanism and coupling to K+ channels.
-
Seizures induced by fever (febrile seizures) are the most frequent seizures affecting infants and children; however, their impact on the developing hippocampal formation is not completely understood. Such understanding is highly important because of the potential relationship of prolonged febrile seizures to temporal lobe epilepsy. Using an immature rat model, we have previously demonstrated that prolonged experimental febrile seizures render the hippocampus hyperexcitable throughout life. ⋯ However, prolonged febrile seizures resulted in long-term axonal reorganization in the immature hippocampal formation: Mossy fiber densities in granule cell- and molecular layers were significantly increased by 3 months (but not 10 days) after the seizures. Thus, the data indicate that prolonged febrile seizures influence connectivity of the immature hippocampus long-term, and this process requires neither significant neuronal loss nor altered neurogenesis. In addition, the temporal course of the augmented mossy fiber invasion of the granule cell and molecular layers suggests that it is a consequence, rather than the cause, of the hyperexcitable hippocampal network resulting from these seizures.
-
The central nervous system (CNS) exhibits remarkable plasticity in early life and can be altered significantly by various prenatal influences. We previously showed that prenatal exposure to morphine altered kinetic properties of N-methyl-D-aspartate (NMDA) receptor-mediated synaptic currents in the hippocampus of young rat offspring at the age of 14 days (P14). The present study further investigates whether NMDA receptor-mediated synaptic plasticity and/or cyclic adenosine monophosphate-responsive element-binding protein (CREBSerine-133), an important transcription factor underlying learning and memory, can be altered by prenatal morphine exposure in these offspring. ⋯ Collectively, the study suggests that maternal exposure to morphine reduces the range of synaptic plasticity by decreasing the expression of LTD, but not of LTP, in CA1 pyramidal neurons of the hippocampus from rat offspring. More importantly, decreased phosphorylation of CREBSerine-133 may play a role for the impaired spatial learning and memory in rat offspring exposure to prenatal morphine. Thus, the findings here may provide important insights into cellular/molecular mechanisms underlying pathophysiological changes in the CNS of young offspring from morphine-addicted mothers and serve as a basis for possible therapeutic intervention.
-
Domoic acid (DA), a kainite-receptor agonist and potent inducer of neurotoxicity, has been administered intravenously in adult rats in the present study (0.75 mg/kg body weight) to demonstrate neuronal degeneration followed by glial activation and their involvement with inducible nitric oxide synthase (iNOS) in the hippocampus. An equal volume of normal saline was administered in control rats. The pineal hormone melatonin, which protects the neurons efficiently against excitotoxicity mediated by sensitive glutamate receptor, was administered intraperitoneally (10 mg/kg body weight), 20 min before, immediately after, and 1 h and 2 h after the DA administration, to demonstrate its role in therapeutic strategy. ⋯ DA-induced neuronal death, glial activation, and iNOS protein expression were attenuated significantly by melatonin treatment and were comparable to the control groups. The results of the present study suggest that melatonin holds potential for the treatment of pathologies associated with DA-induced brain damage. It is speculated that astrogliosis and induction of iNOS protein expression in the neurons and astrocytes of the hippocampus may be in response to DA-induced neuronal degeneration.
-
Thyroid hormone deficiency during a critical period of development profoundly affects cognitive functions such as attention, learning, and memory, but the synaptic alterations underlying these deficits remain unexplored. The present study examines the effect of congenital hypothyroidism on long-term synaptic plasticity. This plasticity is believed to be essential for learning and memory and for activity-dependent regulation of synapse formation in the developing brain. ⋯ Furthermore, the NMDA-receptor antagonist amino-phosphonopentanoic acid (APV) completely blocked LTD, which suggests a postsynaptic locus of this alteration. Because LTD has been associated with novelty acquisition, we suggest that the greater LTD observed in adult hypothyroid rats might be related to the hyperactivity of these animals. However, other possibilities such as a retarded maturation of synaptic plasticity must be taken into account.