Hippocampus
-
Evidence shows that the serine/threonine protein phosphatase 1 (PP1) plays a critical role in synaptic plasticity and memory. Little is known about the contribution of the serine/threonine phosphatase 1 (PP2A) to synaptic plasticity. Both protein phosphatases can target the transcription factor cAMP response element binding protein (CREB), whose phosphorylation at Ser133, we previously found, was downregulated during long-term depression (LTD) of glutamatergic transmission in area CA1 of the adult hippocampus in vivo. ⋯ Thus, both PP1 and PP2A regulate CREB during LTD in area CA1, although possibly through different signaling pathways. Our results demonstrate that PP2A, similar to PP1, plays an essential role in the molecular events that underlie LTD at glutamatergic synapses in hippocampal area CA1 in vivo. We propose that one of the mechanisms through which these protein phosphatases may contribute to the prolonged maintenance of LTD is through the regulation of CREB.
-
Increasing evidence indicates that physical exercise induces adaptations at the cellular, molecular, and systemic levels that positively affect the brain. Insulin plays important functional roles within the brain that are mediated by insulin-receptor (IR) signaling. In the hippocampus, insulin improves synaptic plasticity, memory formation, and learning via direct modulation of GABAergic and glutamatergic receptors. ⋯ In conclusion, physical exercise thus increased hippocampal insulin signaling and improved water maze performance. Overstimulation of insulin signaling in exercised animals, however, via icv administration impaired behavioral performance. This effect was likely the result of aberrant phosphorylation of the NR2B subunit.