Hippocampus
-
The noradrenergic system, driven by locus coeruleus (LC) activation, plays a key role in the regulating and directing of changes in hippocampal synaptic efficacy. The LC releases noradrenaline in response to novel experience and LC activation leads to an enhancement of hippocampus-based learning, and facilitates synaptic plasticity in the form of long-term depression (LTD) and long-term potentiation (LTP) that occur in association with spatial learning. The predominant receptor for mediating these effects is the β-adrenoreceptor. ⋯ These data suggest that β-adrenoreceptor-activation, resulting from noradrenaline release from the LC during enhanced arousal and learning, comprises a mechanism whereby the duration and degree of LTP is regulated and fine tuned. This may serve to optimize the creation of a spatial memory engram by means of LTP and LTD. This process can be expected to support the special role of the dentate gyrus as a crucial subregional locus for detecting and processing novelty within the hippocampus.