Hippocampus
-
Previous studies have shown a relationship between adversity in adolescence and health outcomes in adulthood in a sex-specific manner. Adolescence is characterized by major changes in stress-responsive regions of the brain, including the hippocampus, the site of ongoing neurogenesis throughout the lifespan. Prepubertal male and female rats exhibit different acute reactions to chronic stress compared to adults, but less is known about whether these stress-induced changes persist into adulthood. ⋯ The majority of BrdU-labeled cells were co-labeled with NeuN, an endogenous marker of mature neurons, indicating that neurogenesis was decreased in the DG of adult female rats that had undergone chronic restraint stress in adolescence. Although male rats were more responsive to the chronic stress as adolescents showing higher corticosterone levels and reduced body weight, as adults they showed a slight increase in cell survival and no effect of adolescent stress on basal corticosterone levels. These results suggest that stress during adolescence can have effects on hypothalamic-pituitary-adrenal axis function and hippocampus plasticity in adulthood, particularly in female rats.
-
Evidence shows that the serine/threonine protein phosphatase 1 (PP1) plays a critical role in synaptic plasticity and memory. Little is known about the contribution of the serine/threonine phosphatase 1 (PP2A) to synaptic plasticity. Both protein phosphatases can target the transcription factor cAMP response element binding protein (CREB), whose phosphorylation at Ser133, we previously found, was downregulated during long-term depression (LTD) of glutamatergic transmission in area CA1 of the adult hippocampus in vivo. ⋯ Thus, both PP1 and PP2A regulate CREB during LTD in area CA1, although possibly through different signaling pathways. Our results demonstrate that PP2A, similar to PP1, plays an essential role in the molecular events that underlie LTD at glutamatergic synapses in hippocampal area CA1 in vivo. We propose that one of the mechanisms through which these protein phosphatases may contribute to the prolonged maintenance of LTD is through the regulation of CREB.
-
Increasing evidence indicates that physical exercise induces adaptations at the cellular, molecular, and systemic levels that positively affect the brain. Insulin plays important functional roles within the brain that are mediated by insulin-receptor (IR) signaling. In the hippocampus, insulin improves synaptic plasticity, memory formation, and learning via direct modulation of GABAergic and glutamatergic receptors. ⋯ In conclusion, physical exercise thus increased hippocampal insulin signaling and improved water maze performance. Overstimulation of insulin signaling in exercised animals, however, via icv administration impaired behavioral performance. This effect was likely the result of aberrant phosphorylation of the NR2B subunit.
-
It is now clear that the integrity of the fornix is important for normal mnemonic function. The fornix, however, is a major white matter tract, carrying numerous hippocampal formation afferents and efferents, and it is not known which specific components support memory processes. Established theories of extended hippocampal function emphasize the sequential pathway from the hippocampal formation (i.e., subicular complex) to the mammillary bodies and, thence, to the anterior thalamus, as pathology in each of these structures is implicated in anterograde amnesia in humans and spatial memory deficits in rats. ⋯ Perhaps more surprising, the behavioral impact of cutting the descending postcommissural fornix in rats appeared appreciably less than the effect of either mammillary body or mammillothalamic tract lesions. The present experiments show that the mammillary bodies can still effectively support spatial memory in the absence of their dense subicular complex inputs, so revealing the importance of the other afferents for sustaining mammillary body function. This new evidence for independent functions shows that the mammillary bodies are more than just a hippocampal relay.
-
Rapid eye movement (REM) sleep deprivation (SD) is implicated in impairment of spatial learning and memory and hippocampal long-term potentiation (LTP). An increase in nicotine consumption among habitual smokers and initiation of tobacco use by nonsmokers was observed during SD. Although nicotine treatment was reported to attenuate the impairment of learning and memory and LTP associated with several mental disorders, the effect of nicotine on SD-induced learning and memory impairment has not been studied. ⋯ Treatment of normal rats with nicotine for 24 or 48 h did not enhance spatial learning and memory or affect magnitude of LTP in the CA1 and DG regions. However, concurrent, acute treatment of rats with nicotine significantly attenuated SD-induced impairment of learning and STM and prevented SD-induced impairment of LTP in the CA1 and DG regions. These results show that acute nicotine treatment prevented the deleterious effect of sleep loss on cognitive abilities and synaptic plasticity.